summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xmain.tex340
1 files changed, 165 insertions, 175 deletions
diff --git a/main.tex b/main.tex
index 6d005a9..b27a8ff 100755
--- a/main.tex
+++ b/main.tex
@@ -23,8 +23,8 @@
\AtEveryCitekey{\clearfield{month}}
\addbibresource{main.bib}
-\title{Mobility estimation for Langevin dynamics using control variates\\[.3cm]
- \small \textcolor{yellow}{AMMP Seminar}
+\title{Variance reduction for applications in computational statistical physics\\[.3cm]
+ \small \textcolor{yellow}{IRMAR -- Séminaire de probabilités}%
}
\author{%
@@ -37,10 +37,9 @@
École des Ponts ParisTech
}
-\date{October 2022}
+\date{27 October 2022}
\begin{document}
-
\begin{frame}[plain]
\begin{figure}[ht]
\centering
@@ -116,6 +115,7 @@
\color{blue}
Part I: Mobility estimation for Langevin dynamics
\end{center}
+ \medskip
\begin{figure}
\centering
\begin{minipage}[t]{.2\linewidth}
@@ -172,7 +172,7 @@
}
\begin{frame}
- {Goals of molecular dynamics}
+ {Goals of computational statistical physics}
{\large $\bullet$} Computation of \emph{macroscopic properties} from Newtonians atomistic models:
\vspace{-.1cm}
@@ -322,12 +322,12 @@
\begin{frame}
{Effective diffusion}
- It is possible to show a \emph{functional central limit theorem} for the Langevin dynamics\footfullcite{MR663900}:
+ It is possible to show a \emph{functional central limit theorem} for the Langevin dynamics:
\begin{equation*}
- \varepsilon \vect q_{s/\varepsilon^2} \xrightarrow[\varepsilon \to 0]{} \sqrt{2 \mat D} \, \vect W_s
- \qquad \text{weakly on } C([0, \infty)).
+ \varepsilon \widetilde {\vect q}_{s/\varepsilon^2} \xrightarrow[\varepsilon \to 0]{} \sqrt{2 \mat D} \, \vect W_s
+ \qquad \text{weakly on } C([0, \infty)), \qquad \widetilde {\vect q}_t := \vect q_0 + \int_{0}^{t} \vect p_s \, \d s \in \emph{\real^{d}}.
\end{equation*}
- In particular, $\vect q_t/\sqrt{t} \xrightarrow[t \to \infty]{} \mathcal N(0, 2 \mat D)$ weakly.
+ In particular, $\widetilde {\vect q}_t /\sqrt{t} \xrightarrow[t \to \infty]{} \mathcal N(0, 2 \mat D)$ weakly.
\vspace{-.25cm}
\begin{figure}[ht]
@@ -356,7 +356,7 @@
\end{align*}
and then rearrange:
\begin{align*}
- \alert\varepsilon (q_{t/\alert\varepsilon^2} - q_{0}) &= \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} p_s \, \d s \\
+ \alert\varepsilon (\widetilde q_{t/\alert\varepsilon^2} - \widetilde q_{0}) &= \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} p_s \, \d s \\
&= \underbrace{\alert\varepsilon \bigl(\phi(q_0, p_0) - \phi(q_{t/\alert\varepsilon^2}, p_{t/\alert\varepsilon^2})\bigr)}_{\to 0
% ~\text{in $L^p(\Omega, C([0, T], \real))$}
}
@@ -373,39 +373,8 @@
\textbf{In the multidimensional setting}, $D_{\vect e} = \ip{\phi_{\vect e}}{\vect e^\t \vect p}$ with $- \mathcal L \phi_{\vect e} = \vect e^\t \vect p$
\end{frame}
-\begin{frame}
- {Open question: surface diffusion when $\gamma \ll 1$\footnote{Source of the video: \url{https://en.wikipedia.org/wiki/Surface_diffusion}}}
- \begin{figure}[ht]
- \centering
- \href{run:videos/surface_diffusion.webm?autostart&loop}%
- {\includegraphics[width=0.4\linewidth]{videos/surface_diffusion.png}}
- \hspace{1cm}
- % \href{run:videos/diffusion.webm?autostart&loop}%
- % {\includegraphics[width=0.4\linewidth]{figures/mean_square.pdf}}
- \end{figure}
-
- \vspace{-.3cm}
- Applications:
- \begin{itemize}
- \item integrated circuits;
- \item catalysis.
- \end{itemize}
-
- \textbf{Open question}: behavior of the effective diffusion coefficient when $\gamma \ll 1$?
- \[
- D = \lim_{t \to \infty} \frac{\langle \abs{\vect q(t)}^2 \rangle}{4 t} \sim \gamma^{-\alert{\sigma}}, \qquad \alert{\sigma} =\, ???
- \]
- % \vspace{-.3cm}
-
- % \textbf{Difficulty}: slow convergence of Monte Carlo methods when $\gamma$ is small.
- % \vspace{.3cm}
-\end{frame}
-
-
-% \subsection{Some background material on the Langevin equation}
-
-
\begin{frame}{Langevin dynamics: \textcolor{yellow}{underdamped} and \textcolor{yellow}{overdamped} regimes\footfullcite{MR2394704}}
+ \vspace{-.3cm}
\begin{figure}[ht]
\centering
\href{run:videos/particles_underdamped.webm?autostart&loop}%
@@ -415,108 +384,78 @@
\caption{Langevin dynamics with friction $\gamma = 0.1$ (left) and $\gamma = 10$ (right)}
\end{figure}
- \vspace{-.3cm}
+ \vspace{-.4cm}
\begin{itemize}
\item The \alert{underdamped} limit as $\gamma \to 0$ is well understood in dimension 1 but not in the \alert{multi-dimensional setting}.
+ In dimension 1, it holds that
+ \[
+ \phi = - \mathcal L^{-1} p = \alert{\gamma^{-1}} \phi_{\rm und} + \mathcal O(\gamma^{-1/2}).
+ \]
\item \emph{Overdamped} limit:
as $\gamma \to \infty$, the rescaled process $t \mapsto q_{\gamma t}$ converges weakly to the solution of the \emph{overdamped Langevin equation}:
\[
\dot {\vect q} = - \grad V(q) + \sqrt{2 \, \beta^{-1}} \, \dot {\vect W}.
\]
\end{itemize}
+ \vspace{.2cm}
\end{frame}
\begin{frame}
- {The \textcolor{yellow}{underdamped} limit in \textcolor{yellow}{dimension 1}}
- As \emph{$\gamma \to 0$},
- the Hamiltonian of the rescaled process
- \begin{equation*}
- \left\{
- \begin{aligned}
- q_{\gamma}(t) = q(t/\gamma), \\
- p_{\gamma}(t) = p(t/\gamma),
- \end{aligned}
- \right.
- \end{equation*}
- converges weakly to a diffusion process on a graph.
- \vspace{-.6cm}
-
- \begin{figure}[ht!]
- % \centering
- % #1f77b4', u'#ff7f0e', u'#2ca02c
- \definecolor{c1}{RGB}{31,119,180}
- \definecolor{c2}{RGB}{255,127,14}
- \definecolor{c3}{RGB}{44,160,44}
- \begin{tikzpicture}%
- \node[anchor=south west,inner sep=0] at (0,0) {%
- \includegraphics[width=.7\textwidth]{figures/separatrix.eps}
- };
- \coordinate (origin) at (10,0);
- \coordinate (Emin) at ($ (origin) + (0,.5) $);
- \coordinate (E0) at ($ (origin) + (0,2) $);
- \coordinate (E1) at ($ (origin) + (-1,4) $);
- \coordinate (E2) at ($ (origin) + (1,4) $);
- \node at ($ (Emin) + (.7,0) $) {$E_{\min}$};
- \node[color=red] at ($ (E0) + (.5,0) $) {$E_{0}$};
- \node at ($ (E1) + (0,.3) $) {$p < 0$};
- \node at ($ (E2) + (0,.3) $) {$p > 0$};
- \draw[thick,color=c2] (Emin) -- (E0) node [color=black, midway, right] {};
- \draw[thick,color=c1] (E0) -- (E1) node [color=black, midway, left] {};
- \draw[thick,color=c3] (E0) -- (E2) node [color=black, midway, right] {};
- \node at (E0) [circle,fill,inner sep=1.5pt,color=red]{};
- \node at (Emin) [circle,fill,inner sep=1.5pt]{};
- \end{tikzpicture}%
- \end{figure}
- \vspace{-.5cm}
- In this limit, it holds that
- \[
- % \norm{\mathcal L^{-1}}_{\mathcal B\left(L^2_0(\mu)\right)} = \mathcal O \left( \alert{\gamma^{-1}} \right),
- % \qquad
- \phi = - \mathcal L^{-1} p = \alert{\gamma^{-1}} \phi_{\rm und} + \mathcal O(\gamma^{-1/2}).
- \]
- % The limiting function $\phi_{\rm und}$ is continuous but \alert{not in $H^1(\mu)$}.
-\end{frame}
-
-
-\begin{frame}
{Scaling of the effective diffusion coefficient for \textcolor{yellow}{Langevin} dynamics\footfullcite{MR2427108}}
In \alert{dimension 1},
- \( \lim_{\gamma \to 0} \gamma D^{\gamma} = D_{\rm und} \) and \( \lim_{\gamma \to \infty} \gamma D^{\gamma} = D_{\rm ovd}. \)
+ \( \lim_{\gamma \to 0} \gamma D^{\gamma} = D_{\rm und} := \ip{\phi_{\rm und}}{p} \) and \( \lim_{\gamma \to \infty} \gamma D^{\gamma} = D_{\rm ovd}. \)
\begin{figure}[ht]
\centering
- \includegraphics[width=0.5\linewidth,height=0.33\linewidth]{figures/scaling_diffusion_langevin.png}
+ \includegraphics[width=0.7\linewidth,height=0.45\linewidth]{figures/scaling_diffusion_langevin.png}
\end{figure}
- \textbf{\emph{Our aims in this work:}}
- \begin{itemize}
- \item How can we efficiently estimate the effective diffusion coefficient when \alert{$\gamma \ll 1$}?
- \item How does the mobility scale as \alert{$\gamma \to 0$} in the multidimensional setting?
- \end{itemize}
+ % \textbf{\emph{Our aims in this part:}}
+ % \begin{itemize}
+ % \item How can we efficiently estimate the effective diffusion coefficient when \alert{$\gamma \ll 1$}?
+ % \item How does the mobility scale as \alert{$\gamma \to 0$} in the multidimensional setting?
+ % \end{itemize}
\end{frame}
-
-\subsection{Efficient mobility estimation}%
-
\begin{frame}
- {Brief literature review}
- % Consider the Langevin dynamics with $(\vect q_t, \vect p_t) \in (\real^{\alert{d}} \times \real^{\alert{d}})$:
- % \begin{equation*}
- % \left\{
- % \begin{aligned}
- % & \d \vect q_t = \vect p_t \,\d t, \\
- % & \d \vect p_t = - \grad V (\vect q_t) \, \d t - \gamma \vect p_t \, \d t + \sqrt{2 \gamma \beta^{-1}} \, \d \vect W_t.
- % \end{aligned}
- % \right.
- % \end{equation*}
+ {Open question: surface diffusion when $\gamma \ll 1$\footnote{Source of the video: \url{https://en.wikipedia.org/wiki/Surface_diffusion}}}
+ \vspace{-.1cm}
+ \begin{minipage}[t]{.49\linewidth}
+ Applications:
+ \begin{itemize}
+ \item integrated circuits;
+ \item catalysis.
+ \end{itemize}
+ \end{minipage}
+ \begin{minipage}[t]{.49\linewidth}
+ \vspace{-.3cm}
+ \begin{figure}[ht]
+ \centering
+ \href{run:videos/surface_diffusion.webm?autostart&loop}%
+ {\includegraphics[width=0.8\linewidth]{videos/surface_diffusion.png}}
+ \hspace{1cm}
+ % \href{run:videos/diffusion.webm?autostart&loop}%
+ % {\includegraphics[width=0.4\linewidth]{figures/mean_square.pdf}}
+ \end{figure}
+ \end{minipage}
+
In dimension $> 1$, it \alert{does not hold} that
- $\gamma D^{\gamma}_{\vect e} \xrightarrow[\gamma \to 0]{} D_{\rm und}$ when $V$ is \alert{non separable}, e.g.
+ $\gamma D^{\gamma}_{\vect e} \xrightarrow[\gamma \to 0]{} D_{\rm und}$ when $V$ is \alert{non-separable}, e.g.
\[
V(\vect q) = - \frac{1}{2} \Big( \cos(q_1) + \cos(q_2) \Big) - \alert{\delta} \cos(q_1) \cos(q_2)
\]
- \textbf{Open question:}
- how does $D^\gamma_{\vect e}$ behave when $\gamma \ll 1$ and \alert{$d = 2$}?
- % \begin{block}
+ \textbf{Open question}: behavior of the effective diffusion coefficient when $\gamma \ll 1$?
+ \[
+ D^{\gamma}_{\vect e} = \lim_{t \to \infty} \frac{\expect \Bigl[ \abs{\vect e^\t \vect q_t}^2 \Bigr]}{2 t} \sim \gamma^{-\alert{\sigma}}, \qquad \alert{\sigma} =\, ???
+ \]
+\end{frame}
+
+\begin{frame}
+ {Brief literature review}
+ % \textbf{Open question:}
+ \begin{block}{Open question:}
+ How does $D^\gamma_{\vect e}$ behave when $\gamma \ll 1$ and \alert{$d = 2$}?
+ \end{block}
% {Open question: how does $D^\gamma_{\vect e}$ behave when $\gamma \ll 1$ and \alert{$d = 2$}?}
Various answers are given in the literature:
@@ -530,10 +469,21 @@
\item
$D^{\gamma}_{\vect e} \propto \gamma^{-\sigma}$ with $\sigma$ depending on the potential~\footfullcite{roussel_thesis}.
\end{itemize}
+
+ \vspace{.5cm}
+ \textbf{Difficulty with $\gamma \ll 1$}:
+ \begin{itemize}
+ \item Deterministic methods for the Poisson equation $-\mathcal L \phi_{\vect e} = \vect e^\t \vect p$ are ill-conditioned.
+ \item Probabilistic methods are very slow to converge.
+ \end{itemize}
% \end{block}
\vspace{.5cm}
\end{frame}
+
+\subsection{Efficient mobility estimation}%
+
+
\begin{frame}[label=continue]
{Numerical approaches for calculating the effective diffusion coefficient}
\begin{itemize}
@@ -544,57 +494,29 @@
\end{equation*}
where $\mu_{\eta}$ is the invariant distribution of the system with external forcing.
- \item \emph{Green--Kubo formula}: Since $-\mathcal L^{-1} = \int_{0}^{\infty} \e^{t \mathcal L} \, \d t$,
- \begin{align*}
- D_{\vect e} &= \int - \mathcal L^{-1}(\vect e^\t \vect p) \, (\vect \e^\t \vect p) \, \d \mu = \int_{0}^{\infty} \! \! \! \int \e^{t \mathcal L} (\vect e^\t \vect p) (\vect e^\t \vect p) \, \d \mu \, \d t \\
- &= \int_{0}^{\infty} \expect_{\mu}\bigl((\vect e^\t \vect p_0) (\vect e^\t \vect p_t)\bigr) \, \d t.
- \end{align*}
-
\item \emph{Einstein's relation}:
\[
- D_{\vect e} = \lim_{t \to \infty} \frac{1}{2t} \expect_{\mu} \Bigl[ \bigl|\vect e^\t (\vect q_t - \vect q_0)\bigr|^2 \Bigr].
+ D_{\vect e} = \lim_{t \to \infty} \frac{1}{2t} \expect_{\mu} \Bigl[ \bigl|\vect e^\t (\widetilde {\vect q}_t - \vect q_0)\bigr|^2 \Bigr].
\]
\item Deterministic method, e.g. \emph{Fourier/Hermite Galerkin}, for the Poisson equation
\[
- \mathcal L \phi_{\vect e} = \vect e^\t \vect p, \qquad D_{\vect e} = \ip{\phi_{\vect e}}{p}.
\]
+
+ \item \emph{Green--Kubo formula}: Since $-\mathcal L^{-1} = \int_{0}^{\infty} \e^{t \mathcal L} \, \d t$,
+ \begin{align*}
+ D_{\vect e} &= \int - \mathcal L^{-1}(\vect e^\t \vect p) \, (\vect \e^\t \vect p) \, \d \mu = \int_{0}^{\infty} \! \! \! \int \e^{t \mathcal L} (\vect e^\t \vect p) (\vect e^\t \vect p) \, \d \mu \, \d t \\
+ &= \int_{0}^{\infty} \expect_{\mu}\bigl((\vect e^\t \vect p_0) (\vect e^\t \vect p_t)\bigr) \, \d t.
+ \end{align*}
\end{itemize}
\end{frame}
-% \begin{frame}
-% {Fourier/Hermite Galerkin method for one-dimensional Langevin dynamics}
-%
-% Saddle-point formulation\footfullcite{roussel2018spectral}:
-% find $(\Phi_N, \alpha_N) \in V_N \times \real$ such that
-% \begin{align}
-% \notag
-% - \Pi_N \, \mathcal L \, \Pi_N \alert{\Phi_N} + \alert{\alpha_N} u_N &= \Pi_N p, \\
-% \label{eq:constraint}
-% \ip{\Phi_N}{u_N} &= 0,
-% \end{align}
-% where
-% \begin{itemize}
-% \item $\Pi_N$ is the $L^2(\mu)$ projection operator on a finite-dimensional subspace $V_N$,
-% \item $u_N = \Pi_N 1 / \norm{\Pi_N 1}$.
-% Eq.~\eqref{eq:constraint} ensures that the system is \emph{well-conditioned}.
-% \end{itemize}
-%
-% \vspace{.2cm}
-% For $V_N$, we use the following basis functions:
-% \[
-% e_{i,j} = {\left( Z \, \e^{\beta \left( H(q,p) + |z|^2 \right)} \right)}^{\frac{1}{2}} \, G_i(q) \, H_j(p), \qquad 0 \leq i,j \leq N,
-% \]
-% where $(G_i)_{i \geq 0}$ are \emph{trigonometric functions} and $(H_j)_{i \geq 0}$ are \emph{Hermite polynomials}.
-%
-% $\rightarrow$ \alert{Impractical} in two or more spatial dimensions.
-% \end{frame}
-
\begin{frame}
{Estimation of the effective diffusion coefficient from Einstein's relation}
Consider the following estimator of the effective diffusion coefficient $D_{\vect e}$:
\[
- \emph{u(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2T}}, \qquad (\vect q_0, \vect p_0) \sim \mu.
+ \emph{u(T) = \frac{\abs{\vect e^\t (\widetilde{\vect q}_T - \widetilde {\vect q}_0)}^2}{2T}}, \qquad (\vect q_0, \vect p_0) \sim \mu.
\]
\textbf{Bias of this estimator:}
@@ -620,9 +542,9 @@
For $T \gg 1$,
it holds approximately that
\[
- \frac{\vect e^\t (\vect q_T - \vect q_0)}{\sqrt{2T}} \sim \mathcal N(0, D_{\vect e})
+ \frac{\vect e^\t (\widetilde {\vect q}_T - \widetilde {\vect q}_0)}{\sqrt{2T}} \sim \mathcal N(0, D_{\vect e})
\qquad \leadsto \qquad
- u(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2 D_{\vect e} T} \sim \chi^2 (1).
+ \frac{u(T)}{D_{\vect e}} = \frac{\abs{\vect e^\t (\widetilde {\vect q}_T - \widetilde {\vect q}_0)}^2}{2 D_{\vect e} T} \sim \chi^2 (1).
\]
Therefore, we deduce
\[
@@ -646,11 +568,10 @@
% \subsection{Variance reduction using control variates}
\begin{frame}
{Variance reduction using \textcolor{yellow}{control variates}}
- Let $\phi_{\vect e}$ denote the solution to the \emph{Poisson equation}
+ Let $\phi_{\vect e}$ denote the solution to the \emph{Poisson equation},
\[
- - \mathcal L \phi_{\vect e}(\vect q, \vect p) = \vect e^\t \vect p, \qquad \phi_{\vect e} \in L^2_0(\mu).
+ - \mathcal L \phi_{\vect e}(\vect q, \vect p) = \vect e^\t \vect p, \qquad \phi_{\vect e} \in L^2_0(\mu)
\]
- and let $\psi_{\vect e}$ denote an approximation of $\phi_{\vect e}$.
By It\^o's formula,
we obtain
\[
@@ -658,15 +579,16 @@
= - \int_{0}^{T} \vect e^\t \vect p_t \, \d t + \sqrt{2 \gamma \beta^{-1}} \int_{0}^{T} \grad_{\vect p} \phi_{\vect e}(\vect q_t, \vect p_t) \cdot \d \vect W_t.
\]
Therefore
+ if $\psi_{\vect e}$ denote an approximation of $\phi_{\vect e}$, then
\begin{align*}
- \vect e^\t (\vect q_T - \vect q_0)
+ \vect e^\t (\widetilde {\vect q}_T - \widetilde {\vect q}_0)
&= \int_{0}^{T} \vect e^\t \vect p_t \, \d t \\
&\approx - \psi_{\vect e}(\vect q_T, \vect p_T) + \psi_{\vect e}(\vect q_0, \vect p_0) + \sqrt{2 \gamma \beta^{-1}} \int_{0}^{T} \grad_{\vect p} \psi_{\vect e}(\vect q_t, \vect p_t) \cdot \d \vect W_t
=: \emph{\xi_T}.
\end{align*}
which suggests the \emph{improved estimator}
\[
- v(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2T} - \left( \frac{\abs{\xi_T}^2}{2T} - \lim_{T\to \infty}\expect \left[ \frac{\abs{\xi_T}^2}{2T} \right] \right).
+ v(T) = \frac{\abs{\vect e^\t (\widetilde {\vect q}_T - \widetilde {\vect q}_0)}^2}{2T} - \left( \frac{\abs{\xi_T}^2}{2T} - \lim_{T\to \infty}\expect \left[ \frac{\abs{\xi_T}^2}{2T} \right] \right).
\]
\end{frame}
@@ -757,7 +679,7 @@
\end{figure}
\begin{itemize}
\item Variance reduction is possible if $\abs{\delta}/\gamma \ll 1$;
- \item Control variates are \alert{not very useful} when $\gamma \ll 1$ and $\delta$ is fixed.
+ \item Control variates are \alert{not very useful} as $\gamma \to 0$ and $\delta$ is fixed…
\end{itemize}
\end{frame}
@@ -780,7 +702,7 @@
\textbf{Perspectives for future work:}
\begin{itemize}
\item Use alternative methods (PINNs, Gaussian processes) to solve the Poisson equation;
- \item Improve and study variance reduction approaches for other transport coefficients.
+ \item Study and improve variance reduction approaches for other transport coefficients.
\end{itemize}
\end{frame}
@@ -853,12 +775,15 @@
\begin{frame}
{The sampling problem}
+ \vspace{.2cm}
+
\begin{block}
{Objective of the sampling problem}
- Calculate averages with respect to
+ Calculate averages of the form
\[
- \mu = \frac{\e^{-V}}{Z},
- \qquad Z = \int_{\torus^d} \e^{-V}.
+ I := \mu(f) := \int_{\torus^d} f \, \d \mu,
+ \qquad \mu := \frac{\e^{-V}}{Z},
+ \qquad Z := \int_{\torus^d} \e^{-V}.
\]
\vspace{-.4cm}
\end{block}
@@ -937,7 +862,7 @@
\textbf{Numerator:} by the \emph{central limit theorem},
\[
\frac{1}{\sqrt{N}} \sum_{n=1}^{N} \left((f-I) \e^U\right) (X^{n})
- \xrightarrow[N \to \infty]{\rm Law} \mathcal N\left(0, \int_{\torus^d} \abs*{(f-I) \e^U}^2 \, \d \mu_{U}\right)
+ \xrightarrow[N \to \infty]{\rm Law} \mathcal N\left(0, \int_{\torus^d} \Bigl\lvert (f-I) \e^U \Bigr\rvert^2 \, \d \mu_{U}\right)
\]
\textbf{Denominator:} by the strong law of large numbers,
@@ -951,7 +876,7 @@
\sqrt{N} \bigl( \mu^N_U(f) - I\bigr)
\xrightarrow[T \to \infty]{\rm Law} \mathcal N\bigl(0, s^2_f[U]\bigr),
\qquad
- s^2_f[U] := \frac{2 Z_U^2}{Z^2} \int_{\torus^n} \bigl\lvert (f-I) \e^U \bigr\rvert^2 \, \d \mu_{U}.
+ s^2_f[U] := \frac{Z_U^2}{Z^2} \int_{\torus^n} \bigl\lvert (f-I) \e^U \bigr\rvert^2 \, \d \mu_{U}.
\]
\end{frame}
@@ -961,7 +886,8 @@
it holds that
\[
s^2_f[U]
- \geq \frac{2Z_U^2}{Z^2} \left( \int_{\torus^d} \abs{f-I} \e^U \, \d \mu_{U} \right)^2,
+ \geq \frac{Z_U^2}{Z^2} \left( \int_{\torus^d} \abs{f-I} \e^U \, \d \mu_{U} \right)^2
+ = \frac{1}{Z^2} \left( \int_{\torus^d} \abs{f-I} \e^{-V} \right)^2,
\]
with equality when $\abs{f-I} \e^U$ is constant.
@@ -1100,9 +1026,9 @@
\]
for all $\delta U \in C^{\infty}(\torus^d)$.
\begin{itemize}
- \item Therefore, it must hold that $\abs*{\nabla {\phi_{U}}}^2 = C$ is constant.
- \item Since $\phi_U$ is a smooth function, there is $x \in \torus^d$ such that $\nabla \phi_U(x) = 0$.
- \item Consequently $C = 0$ and so $\nabla \phi_U = 0$: \alert{contradiction} because then $\mathcal L_{U_*} \phi_U = 0$.
+ \item Therefore, it must hold that $\abs*{\nabla {\phi_{U_*}}}^2 = C$ is constant.
+ \item Since $\phi_{U_*}$ is a smooth function, there is $x \in \torus^d$ such that $\nabla \phi_{U_*}(x) = 0$.
+ \item Consequently $C = 0$ and so $\nabla \phi_{U_*} = 0$: \alert{contradiction} because then $\mathcal L_{U_*} \phi_{U_*} = 0$.
\end{itemize}
\vspace{.5cm}
@@ -1110,7 +1036,7 @@
\end{frame}
\begin{frame}
- {Example (1/2)}
+ {Example (1/3)}
Assume that $V = 0$ and $f(x) = \sin(x_1) + \sin(x_2)$.
\begin{figure}[ht]
\centering
@@ -1126,7 +1052,7 @@
\end{frame}
\begin{frame}
- {Example (2/2): multimodal target $\e^{-V}$}
+ {Example (2/3): multimodal target $\e^{-V}$}
Assume that $V(x) = 2\cos(x_1) - \cos(x_2)$ and~$f(x) = \sin(x_1)$.
\begin{figure}[ht]
\centering
@@ -1137,6 +1063,25 @@
\emph{Variance reduction} by a factor $\approx 6$!
\end{frame}
+\begin{frame}
+ {Example (2/3): A more complicated example}
+ In this case we consider that
+ \[
+ V(x) = \exp\left(\cos(x_1) \sin(x_2) + \frac{1}{5} \cos(3x_1)\right),
+ \qquad
+ f(x) = \sin\Bigl(x_1 + \cos(x_2)\Bigr)^3.
+ \]
+\begin{figure}[ht]
+ \centering
+ \includegraphics[width=0.49\linewidth]{figures/2d_difficult_V.pdf}
+ \includegraphics[width=0.49\linewidth]{figures/2d_difficult_optimal}
+ \caption{%
+ Unperturbed potential~$V$ (left) and optimal potential~$V+U$ (right).
+ }
+ \label{fig:2d_difficult}
+\end{figure}
+\end{frame}
+
\subsection{Minimizing the asymptotic variance for a class of observables}
\begin{frame}
{Alternative: minimizing the expected variance over \textcolor{yellow}{a class of observables}}
@@ -1204,6 +1149,51 @@
\appendix
+\begin{frame}
+ {The \textcolor{yellow}{underdamped} limit in \textcolor{yellow}{dimension 1}}
+ As \emph{$\gamma \to 0$},
+ the Hamiltonian of the rescaled process
+ \begin{equation*}
+ \left\{
+ \begin{aligned}
+ q_{\gamma}(t) = q(t/\gamma), \\
+ p_{\gamma}(t) = p(t/\gamma),
+ \end{aligned}
+ \right.
+ \end{equation*}
+ converges weakly to a diffusion process on a graph.
+ \vspace{-.6cm}
+
+ \begin{figure}[ht!]
+ % \centering
+ % #1f77b4', u'#ff7f0e', u'#2ca02c
+ \definecolor{c1}{RGB}{31,119,180}
+ \definecolor{c2}{RGB}{255,127,14}
+ \definecolor{c3}{RGB}{44,160,44}
+ \begin{tikzpicture}%
+ \node[anchor=south west,inner sep=0] at (0,0) {%
+ \includegraphics[width=.7\textwidth]{figures/separatrix.eps}
+ };
+ \coordinate (origin) at (10,0);
+ \coordinate (Emin) at ($ (origin) + (0,.5) $);
+ \coordinate (E0) at ($ (origin) + (0,2) $);
+ \coordinate (E1) at ($ (origin) + (-1,4) $);
+ \coordinate (E2) at ($ (origin) + (1,4) $);
+ \node at ($ (Emin) + (.7,0) $) {$E_{\min}$};
+ \node[color=red] at ($ (E0) + (.5,0) $) {$E_{0}$};
+ \node at ($ (E1) + (0,.3) $) {$p < 0$};
+ \node at ($ (E2) + (0,.3) $) {$p > 0$};
+ \draw[thick,color=c2] (Emin) -- (E0) node [color=black, midway, right] {};
+ \draw[thick,color=c1] (E0) -- (E1) node [color=black, midway, left] {};
+ \draw[thick,color=c3] (E0) -- (E2) node [color=black, midway, right] {};
+ \node at (E0) [circle,fill,inner sep=1.5pt,color=red]{};
+ \node at (Emin) [circle,fill,inner sep=1.5pt]{};
+ \end{tikzpicture}%
+ \end{figure}
+ % The limiting function $\phi_{\rm und}$ is continuous but \alert{not in $H^1(\mu)$}.
+\end{frame}
+
+
\begin{frame}[noframenumbering,plain]
{Connection with the asymptotic variance of MCMC estimators}
\textbf{Ergodic theorem\footfullcite{MR885138}}: for an observable $\varphi \in L^1(\mu)$,