\documentclass[10pt]{beamer} \renewcommand{\emph}[1]{\textcolor{blue}{#1}} \newif\iflong \longfalse \input{header} \input{macros} \newcommand{\highlight}[2]{% \colorbox{#1!20}{$\displaystyle#2$}} \newcommand{\hiat}[4]{% \only<#1>{\highlight{#3}{#4}}% \only<#2>{\highlight{white}{#4}}% } \graphicspath{{figures/}} \AtEveryCitekey{\clearfield{pages}} \AtEveryCitekey{\clearfield{eprint}} \AtEveryCitekey{\clearfield{volume}} \AtEveryCitekey{\clearfield{number}} \AtEveryCitekey{\clearfield{month}} \addbibresource{main.bib} \title{Nonequilibrium systems and computation of transport coefficients\\[.3cm] \small \textcolor{yellow}{SINEQ Summer school}% } \author{% Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{} } \institute{% MATHERIALS -- Inria Paris \textcolor{blue}{\&} CERMICS -- École des Ponts ParisTech } \date{\today} \begin{document} \begin{frame}[plain] \begin{figure}[ht] \centering % \includegraphics[height=1.5cm]{figures/logo_matherials.png} % \hspace{.5cm} \includegraphics[height=1.2cm]{figures/logo_inria.png} \hspace{.5cm} \includegraphics[height=1.5cm]{figures/logo_ponts.png} \hspace{.5cm} \includegraphics[height=1.5cm]{figures/logo_ERC.jpg} \hspace{.5cm} \includegraphics[height=1.5cm]{figures/logo_EMC2.png} \end{figure} \titlepage \end{frame} \begin{frame} {Some references} \begin{itemize} \item \fullcite{MR3509213} \item \fullcite{pavliotis2011applied} \item Lecture notes by Gabriel Stoltz on computational statistical physics: \url{http://cermics.enpc.fr/~stoltz/Cours/intro_phys_stat.pdf} \end{itemize} \end{frame} \begin{frame} {Outline} \tableofcontents \end{frame} \section{Introduction} \begin{frame} {Transport coefficients} At the \alert{macroscopic} level, transport coefficients relate an external forcing to an average response expressed through some steady-state flux. \textbf{Examples:} \begin{itemize} \item The \emph{mobility} relates an external force to a velocity; \item The \emph{heat conductivity} relates a temperature difference to a heat flux; \item The \emph{shear viscosity} relates a shear velocity to a shear stress; \end{itemize} \vspace{.3cm} \textbf{Challenges we do not address:} \begin{itemize} \item Choose thermodynamical ensemble; \item Prescribe microscopic dynamics; \end{itemize} \end{frame} \begin{frame} {Computation of transport coefficients} Three main classes of methods: \begin{itemize} \itemsep.2cm \item Non-equilibrium techniques \begin{itemize} \item Calculations from the steady state of a system out of equilibrium. \item Comprises bulk-driven and boundary-driven approaches. \end{itemize} \item Equilibrium techniques based on the Green--Kubo formula \[ \rho = \int_{0}^{\infty} \expect_{\mu} \bigl[\varphi(x_t) \phi(x_0)\bigr] \, \d t. \] \item Transient techniques: \end{itemize} \end{frame} \section{Equilibrium and nonequilibrium dynamics} \begin{frame} {Equilibrium and nonequilibrium dynamics} Consider a general diffusion process of the form \[ \d x_t = b(x_t) \, \d t + \sigma(x_t) \, \d W_t, \] and assume that it admits an invariant distribution $\mu$. \vspace{.2cm} \begin{definition} [Time-reversibility] A stationary ($x_0 \sim \mu$) stochastic process $(x_t)$ is time-reversible if its law is invariant under time reversal: the law of the \emph{forward paths} $(x_s)_{0 \leq s \leq t}$ coincides with the law of the \emph{backward paths} $(x_{t-s})_{0 \leq s \leq t}$. \end{definition} \vspace{.2cm} \begin{theorem} A stationary diffusion processes $x_t$ in $\real^d$ with generator $\mathcal L$ and invariant measure~$\mu$ is reversible if and only if $\mathcal L$ is self-adjoint in~$L^2(\mu)$. \end{theorem} \end{frame} \end{document} % vim: ts=2 sw=2