summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorUrbain Vaes <urbain@vaes.uk>2023-09-21 11:43:21 +0200
committerUrbain Vaes <urbain@vaes.uk>2023-09-21 11:43:21 +0200
commit06ebedae24304577f71880412ba33d0ecf0d10a4 (patch)
tree18f8602f09dee067b4caf3789aabab22a7f9d9b9
parente64a03583d84c663f302e53886783179496ae517 (diff)
Save changes
-rwxr-xr-xmain.bib19
-rwxr-xr-xmain.tex84
2 files changed, 94 insertions, 9 deletions
diff --git a/main.bib b/main.bib
index fdbf80e..0532ba7 100755
--- a/main.bib
+++ b/main.bib
@@ -433,4 +433,21 @@ MRREVIEWER = {Yves Derriennic},
URL = {https://doi-org.extranet.enpc.fr/10.1007/BF00531822},
}
-
+@incollection {MR2857021,
+ AUTHOR = {Hairer, Martin and Mattingly, Jonathan C.},
+ TITLE = {Yet another look at {H}arris' ergodic theorem for {M}arkov
+ chains},
+ BOOKTITLE = {Seminar on {S}tochastic {A}nalysis, {R}andom {F}ields and
+ {A}pplications {VI}},
+ SERIES = {Progr. Probab.},
+ VOLUME = {63},
+ PAGES = {109--117},
+ PUBLISHER = {Birkh\"{a}user/Springer Basel AG, Basel},
+ YEAR = {2011},
+ ISBN = {978-3-0348-0020-4},
+ MRCLASS = {60J05 (37A30 37A50 47D07)},
+ MRNUMBER = {2857021},
+MRREVIEWER = {Wojciech\ Bartoszek},
+ DOI = {10.1007/978-3-0348-0021-1\_7},
+ URL = {https://doi.org/10.1007/978-3-0348-0021-1_7},
+}
diff --git a/main.tex b/main.tex
index 04a91b6..ba7d319 100755
--- a/main.tex
+++ b/main.tex
@@ -1,5 +1,6 @@
-\documentclass[10pt]{beamer}
+\documentclass[9pt]{beamer}
\renewcommand{\emph}[1]{\textcolor{blue}{#1}}
+\newcommand{\blue}[1]{\textcolor{blue}{#1}}
\newif\iflong
\longfalse
@@ -7,7 +8,7 @@
\input{macros}
\newcommand{\highlight}[2]{%
- \colorbox{#1!20}{$\displaystyle#2$}}
+\colorbox{#1!20}{$\displaystyle#2$}}
\newcommand{\hiat}[4]{%
\only<#1>{\highlight{#3}{#4}}%
@@ -27,13 +28,13 @@
}
\author{%
- Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{}
+ Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{}
}
\institute{%
- MATHERIALS -- Inria Paris
- \textcolor{blue}{\&} CERMICS --
- École des Ponts ParisTech
+ MATHERIALS -- Inria Paris
+ \textcolor{blue}{\&} CERMICS --
+ École des Ponts ParisTech
}
\date{\today}
@@ -62,7 +63,7 @@
\item \fullcite{MR3509213}
\item \fullcite{pavliotis2011applied}
\item Lecture notes by Gabriel Stoltz on computational statistical physics:
- \url{http://cermics.enpc.fr/~stoltz/Cours/intro_phys_stat.pdf}
+ \url{http://cermics.enpc.fr/~stoltz/Cours/intro_phys_stat.pdf}
\end{itemize}
\end{frame}
@@ -139,6 +140,27 @@
\end{frame}
\begin{frame}
+ {Invariant distribution in dimension 1}
+ For the equilibrium overdamped Langevin dynamics
+ \[
+ \d q_t = - V'(q_t) \, \d t + \sqrt{2} \, \d W_t,
+ \]
+ the invariant probability distribution is given by~$Z^{-1} \e^{-V(q)} \, \d q$.
+ For the perturbed dynamics
+ \[
+ \d q_t = - V'(q_t) \, \d t + \blue{\eta} + \sqrt{2} \, \d W_t,
+ \]
+ the invariant probability distribution~$\rho_{\eta}$ solves the Fokker--Planck equation
+ \[
+ \frac{\d}{\d q}\left( \left(\frac{\d V}{\d q} - \eta\right) \rho_{\eta} + \frac{\d \rho_{\eta}}{\d q} \right) = 0,
+ \]
+ which can be solved as
+ \[
+ \rho_{\eta}(q) \propto \int_{\torus} \e^{V(q+y) - V(q) - \eta y} \, \d y.
+ \]
+\end{frame}
+
+\begin{frame}
{Existence of an invariant measure for noneq.\ dynamics}
Consider the paradigmatic dynamics
\begin{align*}
@@ -147,8 +169,54 @@
\end{align*}
where $(q_t, p_t) = \torus^d \times \real^d$ and $F \in \real^d$ with $\abs{F} = 1$ is a given direction.
+ \begin{figure}[ht]
+ \centering
+ \includegraphics[width=0.39\linewidth]{figures/intro_position.pdf}
+ \includegraphics[width=0.39\linewidth]{figures/intro_velocity.pdf}
+ \caption{%
+ Marginals of the steady state solution of the Langevin dynamics with forcing
+ }
+ \end{figure}
+\end{frame}
+
+\begin{frame}
+ {Existence of an invariant distribution}
+
+ \begin{theorem}
+ Fix~$\eta_* > 0$ and $n \geq 2$,
+ and let $\mathcal K_n(q, p) := 1 + \abs{p}^n$.
+ For any $\eta \in [- \eta_*, \eta_*]$,
+ there exists a unique invariant probability measure,
+ with a smooth density~$\psi_{\eta}(q, p)$ with respect to the Lebesgue measure.
+ Furthermore there exists $C = C(n, \eta_*) > 0$ and $\lambda = \lambda(n, \eta_*) > 0$ such that
+ \[
+ \forall \phi \in L^{\infty}_{\mathcal K_n}(\mathcal E), \qquad
+ \left\lVert \e^{t \mathcal L_n} \phi - \int_{\mathcal E} \phi \, \psi_{\eta} \right\rVert_{L^{\infty}_{\mathcal K_n}}
+ \leq C \e^{-\lambda t} \left\lVert \phi - \int_{\mathcal E} \phi \, \psi_{\eta} \right\rVert_{L^{\infty}_{\mathcal K_n}}
+ \]
+ \end{theorem}
+
+ \textbf{Idea of the proof.}
+ Show that
+ \begin{align*}
+ \mathcal L \mathcal K_n &\leq - c_1 \mathcal K_n(q, p) + c_2,
+ \end{align*}
+ for $c_1 > 0$ and $c_2 > 0$.
+ Then apply the main theorem from~\footfullcite{MR2857021}.
+\end{frame}
+
+\begin{frame}
+ {Existence of an invariant measure}
+ \[
+ d(P \mu, P \nu)
+ \leq
+ \]
+\end{frame}
+
+\begin{frame}
+
\end{frame}
\end{document}
-% vim: ts=2 sw=2
+% vim: ts=4 sw=4