summaryrefslogtreecommitdiff
path: root/main.tex
diff options
context:
space:
mode:
Diffstat (limited to 'main.tex')
-rwxr-xr-xmain.tex212
1 files changed, 126 insertions, 86 deletions
diff --git a/main.tex b/main.tex
index c89b161..ceb383b 100755
--- a/main.tex
+++ b/main.tex
@@ -149,8 +149,8 @@
\begin{itemize}
\item Equilibrium vs nonequilibrium dynamics;
\item Definition and computation of the mobility;
- \item Computation of other transport coefficients.
- \item Error analysis
+ \item Computation of other transport coefficients;
+ \item Error analysis.
\end{itemize}
\end{frame}
@@ -435,14 +435,14 @@
The \textbf{minorization condition} is satisfied.
Indeed for $t > 0$
\begin{align*}
- p(x, A)
- &= \expect \left[ q_t \in A \, \middle| \, q_0 = x \right]
- = \expect \left[ \mathds 1_{A} \left(x + W_t \right) M_t \right]
- && M_t = \text{Girsanov weight} \\
- &= \proba \left[ x + W_t \in A \right] \expect \left[ M_t \, | \, \{x + W_t \in A\} \right] \\
- &\geq C \proba \left[ x + W_t \in A \right] \geq C \lambda(A) && \lambda := \text{Lebesgue measure}.
+ \mathcal P^{\dagger}\mu (A)
+ &= \expect \left[ q_t \in A \, \middle| \, q_0 \sim \mu \right]
+ = \int_{\mathcal E} \int_{A} p_t(x, y) \, \mu(\d x) \,
+ && p_t = \text{transition pdf} \\
+ &\geq \left( \inf_{(x,y) \in \mathcal E^2} p_t(x, y) \right) \lambda(A) && \lambda := \text{Lebesgue measure}.
\end{align*}
- and additionally ${\rm Law} (q_t)$ is smooth by parabolic regularity.
+ The infimum is achieved by parabolic regularity,
+ and achieved by {\blue Harnack's inequality}.
\item
\textbf{Decay of the semigroup}:
For $t \in [0, \infty)$ and $\varphi \in L^{\infty}_*$, it holds that
@@ -604,51 +604,90 @@
\begin{frame}
{Elements of proof}
- Let us introduce
+ Let $\Pi_0$ denote the following projection operator
\[
- H^1_{p}(\psi_0) =
- \Bigl\{ \varphi \in L^2(\psi_0) : \grad_p \varphi \in L^2(\psi) \Bigr\},
- \qquad \| \varphi \|_{H^1_{p}(\psi_0)}^2 = \| \varphi \|_{L^2(\psi_0)}^2 + \| \nabla_p \varphi \|_{L^2(\psi_0)}^2.
+ \Pi_0 f := f - \int_{\mathcal E} f \, \psi_0
\]
\vspace{-.3cm}
\begin{itemize}
\itemsep.2cm
- \item
- The operator {\blue $\widetilde {\mathcal L}^*\colon H^1_p(\psi_0) \to L^2_0(\psi)$} is well-defined and bounded.
- Indeed
+ \item
+ The operator $\mathcal L_0^{-1}$ is a well defined bounded operator on $L_0^2(\psi_0)$ \\
+
+ ({\red Hypocoercivity} + {\red hypoelliptic regularization})
+
+ \item Since $\dps \gamma \| \nabla_p \varphi \|^2_{L^2(\psi_0)} = -\langle \mathcal L_0 \varphi,\varphi \rangle_{L^2(\psi_0)}$, it follows that
+ \vspace{-0.2cm}
\[
- \lVert \widetilde {\mathcal L}^* \varphi \rVert_{L^2_0(\psi_0)}^2
- = \ip{\nabla_p^* F \varphi}{\nabla_p^* F \varphi}_{L^2_0(\psi_0)}
- \leq \lVert \varphi \rVert_{H^1_p(\psi_0)}^2
+ \| \widetilde {\mathcal L} \varphi \|^2_{L^2(\psi_0)} \leq \| \nabla_p \varphi \|^2_{L^2(\psi_0)} \leq \frac{1}{\gamma} \| \mathcal L_0 \varphi \|_{L^2(\psi_0)} \| \varphi \|_{L^2(\psi_0)}
\]
- and
+ Thus {\blue $\Pi_0 \widetilde {\mathcal L} \mathcal L_0^{-1}$ is bounded on $L^2_0(\psi_0)$}.
\[
- \int_{\mathcal E} \widetilde {\mathcal L}^* \phi \, \psi_0
- = \int_{\mathcal E} \nabla_p^* (F \phi) \, \psi_0 = 0.
+ \| \widetilde {\mathcal L} \mathcal L_0^{-1} \varphi \|^2_{L^2(\psi_0)}\leq \frac{\beta}{\gamma} \| \varphi \|_{L^2(\psi_0)} \| \mathcal L_0^{-1} \varphi \|_{L^2(\psi_0)}.
\]
- \item
- The operator {\blue $(\mathcal L_0^*)^{-1} \colon L^2_0(\psi_0) \to H^1_p(\psi_0)$} is well-defined and bounded,
- by {\red hypocoercivity} and {\red hypoelliptic regularization}.
- % In particular, for $\phi = (\mathcal L_0^*)^{-1} \varphi$
- % \begin{align*}
- % \| \phi \|_{L^2(\psi_0)}^2
- % + \| \nabla_p \phi \|_{L^2(\psi_0)}^2
- % &= \|(\mathcal L_0^*)^{-1} \varphi \|_{L^2(\psi_0)}^2
- % + \frac{1}{\gamma} \ip{-\mathcal L_0^* \phi}{\phi}_{L^2(\psi_0)} \\
- % &\leq \frac{1}{\gamma} \norm{(\mathcal L_0^*)^{-1}}_{\mathcal B\bigl(L^2(\psi_0)\bigr)}^2
- % \norm{\varphi}_{L^2(\psi_0)}
- % \end{align*}
+
+
+ \item It follows that $(\widetilde {\mathcal L} \mathcal L_0^{-1})^* \Pi_0 = (\widetilde {\mathcal L} \mathcal L_0^{-1})^*$ is also bounded on $L^2_0(\psi_0)$
+
+ \medskip
\item Invariance of $f_\eta$ by $\mathcal L_\eta^* = \mathcal L_0^* + \eta \wcL^*$
\vspace{-0.2cm}
\[
- \mathcal L_\eta^* f_\eta = \mathcal L_0^* \left(1 + \eta (\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^* \right) f_\eta = \mathcal L_0^* \mathbf{1} = 0.
+ \mathcal L_\eta^* f_\eta = \mathcal L_0^* \left(1 + \eta (\wcL \mathcal L_0^{-1})^* \right) f_\eta = \mathcal L_0^* \mathbf{1} = 0
\]
\item {\red Prove that $f_\eta \geq 0$}.
\end{itemize}
\end{frame}
+% \begin{frame}
+% {Elements of proof}
+% Let us introduce
+% \[
+% H^1_{p}(\psi_0) =
+% \Bigl\{ \varphi \in L^2(\psi_0) : \grad_p \varphi \in L^2(\psi) \Bigr\},
+% \qquad \| \varphi \|_{H^1_{p}(\psi_0)}^2 = \| \varphi \|_{L^2(\psi_0)}^2 + \| \nabla_p \varphi \|_{L^2(\psi_0)}^2.
+% \]
+% \vspace{-.3cm}
+% \begin{itemize}
+% \itemsep.2cm
+% \item
+% The operator {\blue $\widetilde {\mathcal L}^*\colon H^1_p(\psi_0) \to L^2_0(\psi)$} is well-defined and bounded.
+% Indeed
+% \[
+% \lVert \widetilde {\mathcal L}^* \varphi \rVert_{L^2_0(\psi_0)}^2
+% = \ip{\nabla_p^* F \varphi}{\nabla_p^* F \varphi}_{L^2_0(\psi_0)}
+% \leq \lVert \varphi \rVert_{H^1_p(\psi_0)}^2
+% \]
+% and
+% \[
+% \int_{\mathcal E} \widetilde {\mathcal L}^* \phi \, \psi_0
+% = \int_{\mathcal E} \nabla_p^* (F \phi) \, \psi_0 = 0.
+% \]
+% \item
+% The operator {\blue $(\mathcal L_0^*)^{-1} \colon L^2_0(\psi_0) \to H^1_p(\psi_0)$} is well-defined and bounded,
+% by {\red hypocoercivity} and {\red hypoelliptic regularization}.
+% % In particular, for $\phi = (\mathcal L_0^*)^{-1} \varphi$
+% % \begin{align*}
+% % \| \phi \|_{L^2(\psi_0)}^2
+% % + \| \nabla_p \phi \|_{L^2(\psi_0)}^2
+% % &= \|(\mathcal L_0^*)^{-1} \varphi \|_{L^2(\psi_0)}^2
+% % + \frac{1}{\gamma} \ip{-\mathcal L_0^* \phi}{\phi}_{L^2(\psi_0)} \\
+% % &\leq \frac{1}{\gamma} \norm{(\mathcal L_0^*)^{-1}}_{\mathcal B\bigl(L^2(\psi_0)\bigr)}^2
+% % \norm{\varphi}_{L^2(\psi_0)}
+% % \end{align*}
+%
+% \item Invariance of $f_\eta$ by $\mathcal L_\eta^* = \mathcal L_0^* + \eta \wcL^*$
+% \vspace{-0.2cm}
+% \[
+% \mathcal L_\eta^* f_\eta = \mathcal L_0^* \left(1 + \eta (\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^* \right) f_\eta = \mathcal L_0^* \mathbf{1} = 0.
+% \]
+%
+% \item {\red Prove that $f_\eta \geq 0$}.
+% \end{itemize}
+% \end{frame}
+
\begin{frame}
{Perturbation expansion for {\yellow $\eta$ sufficiently small} (3/3)}
@@ -1064,7 +1103,7 @@ The Hamiltonian of the system is the sum of the potential and kinetic energies:
\begin{frame}
- {Shear viscosity in fluids (2)}
+ {Shear viscosity in fluids (3)}
Assume pairwise interactions
\[
V(q) = \sum_{1 \leq i < j \leq N} \mathcal V(\abs{q_i - q_j}).
@@ -1092,7 +1131,7 @@ The Hamiltonian of the system is the sum of the potential and kinetic energies:
\begin{frame}
- {Shear viscosity in fluids (3)}
+ {Shear viscosity in fluids (4)}
\bu {\blue Linear response}:
\[
@@ -1362,58 +1401,10 @@ We verify the error estimate for $\varphi \in \mathrm{Ran}(P_\dt-\I)$.
\begin{block}{}
Suggests $f_{p+1} = -\left( \mathcal A_1^* \right)^{-1} g_{p+1}$
\end{block}
-
\end{frame}
\begin{frame}
- {Numerical estimators and associated challenges}
- \begin{itemize}
- \item
- Estimator of linear response (observable~$R$ with equilibrium average~0)
- \[
- \widehat{A}_{\eta,t} = \frac{1}{\eta t}\int_0^t R(q_s^\eta,p_s^\eta) \, ds \xrightarrow[t\to+\infty]{\mathrm{a.s.}}
- \alpha_\eta := \frac1\eta \int_{\mathcal E} R \, f_\eta \, d\mu = \alpha + \mathcal O(\eta)
- \]
- {\bf Issues with linear response methods:}
- \begin{itemize}
- \item Statistical error with {\red asymptotic variance $\mathcal O(\eta^{-2})$}
- \item Bias $\mathcal O(\eta)$ due to $\eta \neq 0$
- \item Bias from finite integration time
- \end{itemize}
-
- \end{itemize}
-\end{frame}
-
-\begin{frame}\frametitle{Analysis of variance / finite integration time bias}
-
- \bu {\bf Statistical error} dictated by {\blue Central Limit Theorem}:
- \[
- \sqrt{t} \left(\widehat{A}_{\eta,t} - \alpha_\eta \right) \xrightarrow[t \to +\infty]{\mathrm{law}} \mathcal{N}\left(0,\frac{\sigma_{R,\eta}^2}{\eta^2}\right),
- \qquad
- \sigma_{R,\eta}^2 = \sigma_{R,0}^2 + \mathcal O(\eta)
- \]
- so $\dps \widehat{A}_{\eta,t} = \alpha_\eta + \mathcal O_{\rm P}\left(\frac{1}{\eta \sqrt{t}}\right)$ $\to$ requires {\red long simulation times} $t \sim \eta^{-2}$
-
- \bigskip
-
- \bu {\bf Finite time integration bias}: $\dps \left| \mathbb{E}\left(\widehat{A}_{\eta,t}\right) - \alpha_\eta \right| \leq \frac{K}{\eta t}$ \\
- Bias due to $t < +\infty$ is $\dps \mathcal O\left(\frac{1}{\eta t}\right)$ $\to$ typically {\red smaller than statistical error}
-
-%\bigskip
- %\bu Bias~$\mathcal O(\eta)$ and statistical error equilibrated for~$t \sim \eta^{-3}$
-
-\bigskip
-
-\bu Key equality for the proofs: introduce $\dps -\left(\mathcal{L}+\eta\widetilde{\mathcal{L}}\right) \mathscr{R}_\eta = R - \int_\mathcal{E} R f_\eta \, d\mu$
-\[
-\widehat{A}_{\eta,t} - \frac1\eta \!\int_{\mathcal{E}} \!R f_\eta \, d\mu = \frac{\mathscr{R}_\eta(q_0^\eta,p_0^\eta) - \mathscr{R}_\eta(q_t^\eta,p_t^\eta)}{\eta t} + \frac{\sqrt{2\gamma}}{\eta t\sqrt{\beta}} \int_0^t \!\!\nabla_p \mathscr{R}_\eta(q_s^\eta,p_s^\eta)^T dW_s
-\]
-
-\end{frame}
-
-
-
-\begin{frame}\frametitle{Examples of splitting schemes for Langevin dynamics (1)}
+ {Examples of splitting schemes for Langevin dynamics (1)}
\bu Example: Langevin dynamics, discretized using a {\blue splitting} strategy
\[
@@ -1475,6 +1466,55 @@ p^{n+1} & = \alpha_{\dt/2} \widetilde{p}^{n+1} + \sqrt{\frac{1-\alpha_{\dt}}{\be
\end{frame}
+\begin{frame}
+ {Numerical estimators and associated challenges}
+ \begin{itemize}
+ \item
+ Estimator of linear response (observable~$R$ with equilibrium average~0)
+ \[
+ \widehat{A}_{\eta,t} = \frac{1}{\eta t}\int_0^t R(q_s^\eta,p_s^\eta) \, ds \xrightarrow[t\to+\infty]{\mathrm{a.s.}}
+ \alpha_\eta := \frac1\eta \int_{\mathcal E} R \, f_\eta \, d\mu = \alpha + \mathcal O(\eta)
+ \]
+ {\bf Issues with linear response methods:}
+ \begin{itemize}
+ \item Statistical error with {\red asymptotic variance $\mathcal O(\eta^{-2})$}
+ \item Bias $\mathcal O(\eta)$ due to $\eta \neq 0$
+ \item Bias from finite integration time
+ \end{itemize}
+
+ \end{itemize}
+\end{frame}
+
+\begin{frame}\frametitle{Analysis of variance / finite integration time bias}
+
+ \bu {\bf Statistical error} dictated by {\blue Central Limit Theorem}:
+ \[
+ \sqrt{t} \left(\widehat{A}_{\eta,t} - \alpha_\eta \right) \xrightarrow[t \to +\infty]{\mathrm{law}} \mathcal{N}\left(0,\frac{\sigma_{R,\eta}^2}{\eta^2}\right),
+ \qquad
+ \sigma_{R,\eta}^2 = \sigma_{R,0}^2 + \mathcal O(\eta)
+ \]
+ so $\dps \widehat{A}_{\eta,t} = \alpha_\eta + \mathcal O_{\rm P}\left(\frac{1}{\eta \sqrt{t}}\right)$ $\to$ requires {\red long simulation times} $t \sim \eta^{-2}$
+
+ \bigskip
+
+ \bu {\bf Finite time integration bias}: $\dps \left| \mathbb{E}\left(\widehat{A}_{\eta,t}\right) - \alpha_\eta \right| \leq \frac{K}{\eta t}$ \\
+ Bias due to $t < +\infty$ is $\dps \mathcal O\left(\frac{1}{\eta t}\right)$ $\to$ typically {\red smaller than statistical error}
+
+%\bigskip
+ %\bu Bias~$\mathcal O(\eta)$ and statistical error equilibrated for~$t \sim \eta^{-3}$
+
+\bigskip
+
+\bu Key equality for the proofs: introduce $\dps -\left(\mathcal{L}+\eta\widetilde{\mathcal{L}}\right) \mathscr{R}_\eta = R - \int_\mathcal{E} R f_\eta \, d\mu$
+\[
+\widehat{A}_{\eta,t} - \frac1\eta \!\int_{\mathcal{E}} \!R f_\eta \, d\mu = \frac{\mathscr{R}_\eta(q_0^\eta,p_0^\eta) - \mathscr{R}_\eta(q_t^\eta,p_t^\eta)}{\eta t} + \frac{\sqrt{2\gamma}}{\eta t\sqrt{\beta}} \int_0^t \!\!\nabla_p \mathscr{R}_\eta(q_s^\eta,p_s^\eta)^T dW_s
+\]
+
+\end{frame}
+
+
+
+
\begin{frame}\frametitle{Error estimates on linear response}
\begin{block}{Error estimates for nonequilibrium dynamics}