1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
|
\documentclass[9pt]{beamer}
\newif\iflong
\longfalse
\usepackage{psfrag}
\newcommand{\placeholder}{\mathord{\color{black!33}\bullet}}%
\newcommand{\bu}{$\bullet \ $}
\newcommand{\bi}{\begin{itemize}}
\newcommand{\ei}{\end{itemize}}
\renewcommand{\leq}{\leqslant}
\renewcommand{\le}{\leqslant}
\renewcommand{\geq}{\geqslant}
\newcommand{\dt}{{\Delta t}}
\newcommand\centerequation[1]{\par\smallskip\par \centerline{$\displaystyle #1$}\par \smallskip\par}
\newcommand{\D}{\,\mathrm{d}}
\newcommand{\cX}{\mathcal{X}}
\newcommand{\E}{\expect}
\newcommand{\wcL}{\widetilde{\mathcal{L}}}
\newcommand{\Li}{\mathcal{K}}
\newcommand{\I}{\mathrm{Id}}
\newcommand{\dps}{\displaystyle}
\newcommand{\red}{\color{red}}
\newcommand{\blue}{\color{blue}}
\newcommand{\yellow}{\color{yellow}}
\input{header}
\input{macros}
\newcommand{\highlight}[2]{%
\colorbox{#1!20}{$\displaystyle#2$}}
\newcommand{\hiat}[4]{%
\only<#1>{\highlight{#3}{#4}}%
\only<#2>{\highlight{white}{#4}}%
}
\graphicspath{{figures/}}
\AtEveryCitekey{\clearfield{pages}}
\AtEveryCitekey{\clearfield{eprint}}
\AtEveryCitekey{\clearfield{volume}}
\AtEveryCitekey{\clearfield{number}}
\AtEveryCitekey{\clearfield{month}}
\addbibresource{main.bib}
\title{Nonequilibrium systems and computation of transport coefficients\\[.3cm]
\small \textcolor{yellow}{SINEQ Summer school}%
}
\author{%
Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{}
}
\institute{%
MATHERIALS -- Inria Paris
\textcolor{blue}{\&} CERMICS --
École des Ponts ParisTech
}
\date{\today}
\begin{document}
\begin{frame}[plain]
\begin{figure}[ht]
\centering
% \includegraphics[height=1.5cm]{figures/logo_matherials.png}
% \hspace{.5cm}
\includegraphics[height=1.2cm]{figures/logo_inria.png}
\hspace{.5cm}
\includegraphics[height=1.5cm]{figures/logo_ponts.png}
\hspace{.5cm}
\includegraphics[height=1.5cm]{figures/logo_ERC.jpg}
\hspace{.5cm}
\includegraphics[height=1.5cm]{figures/logo_EMC2.png}
\end{figure}
\titlepage
\end{frame}
\begin{frame}
{Some references}
\begin{itemize}
\itemsep.2cm
\item \fullcite{MR3509213}
\item \fullcite{pavliotis2011applied}
\item \fullcite{MR2723222}
\item Lecture notes by Gabriel Stoltz on computational statistical physics:
\url{http://cermics.enpc.fr/~stoltz/Cours/intro_phys_stat.pdf}
\end{itemize}
\end{frame}
\section{Introduction}
\begin{frame}
\frametitle{Introduction}
{\bf Aims of computational statistical physics}
\begin{itemize}
\item {\red numerical microscope}
\item computation of {\blue average properties}, static or dynamic
\end{itemize}
\begin{center}
\begin{minipage}[t]{.6\textwidth}
\begin{figure}[ht]
\centering
\resizebox{\textwidth}{!}{%
\begin{tikzpicture}
\node[anchor=south west,inner sep=0] at (0,0) {\includegraphics[width=\textwidth]{figures/nanotube.png}};
\node [draw, color=red!60, fill=red!5, very thick, rectangle, minimum height=1cm] (warm) at (0,1) {$T_+$};
\node [draw, color=blue!60, fill=blue!5, very thick, rectangle, minimum height=1cm] (cold) at (7.3,4.1) {$T_-$};
% \node [draw=none] (flux) at (5,2) {$J$};
\draw[->, line width=1mm] (3.5,0.9) to node[below]{$J$} ++(2.5,2);
\node [draw=none, minimum height=1cm] (unknown) at (0,4) {%
\begin{minipage}{4cm}
\centering
\textbf{Fourier's law:}%
\[
J = - \alert{\kappa} \grad T
\]
\end{minipage}
};
\end{tikzpicture}}
\end{figure}
\end{minipage}
\end{center}
``Given the structure and the {\red laws of interaction} of the particles, what are the {\blue macroscopic properties} of the systems composed of these particles?''
\end{frame}
\begin{frame}
{Transport coefficients}
At the \alert{macroscopic} level,
transport coefficients relate an external forcing to an average response expressed through some steady-state flux.
\textbf{Examples:}
\begin{itemize}
\item The \emph{mobility} relates an external force to a velocity;
\item The \emph{heat conductivity} relates a temperature difference to a heat flux;
\item The \emph{shear viscosity} relates a shear velocity to a shear stress.
\end{itemize}
\vspace{.3cm}
They can be estimated from molecular simulation at the \blue{microscopic level}.
\begin{itemize}
\item Defined from \emph{nonequilibrium} dynamics;
\item Three main classes of methods to calculate them.
\end{itemize}
\vspace{.3cm}
\textbf{\blue Outline of this talk}
\begin{itemize}
\item Equilibrium vs nonequilibrium dynamics;
\item Definition and computation of the mobility;
\item Computation of other transport coefficients.
\item Error analysis
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\Large
\color{blue}
Part I: Definition and examples of nonequilibrium systems
\end{center}
\centering
\begin{minipage}{.8\textwidth}
\begin{itemize}
\item Equilibrium vs nonequilibrium dynamics
\item Existence of an invariant measure for nonequilibrium dynamics
\item Convergence to the invariant measure
\item Perturbation expansion of the invariant measure
\end{itemize}
\end{minipage}
\end{frame}
\section{Equilibrium and nonequilibrium dynamics}
\begin{frame}
{Equilibrium and nonequilibrium dynamics}
Consider a general diffusion process of the form
\[
\d x_t = b(x_t) \, \d t + \sigma(x_t) \, \d W_t,
\]
and assume that it admits an invariant distribution $\mu$.
\vspace{.2cm}
\begin{definition}
[Time-reversibility]
A stationary ($x_0 \sim \mu$) stochastic process $(x_t)$ is time-reversible if its law is invariant under time reversal:
the law of the \emph{forward paths} $(x_s)_{0 \leq s \leq t}$
coincides with the law of the \emph{backward paths} $(x_{t-s})_{0 \leq s \leq t}$.
\end{definition}
\vspace{.2cm}
\begin{theorem}
A stationary diffusion processes $x_t$ in $\real^d$ with generator $\mathcal L$ and invariant measure~$\mu$ is reversible if and only if $\mathcal L$ is self-adjoint in~$L^2(\mu)$.
\end{theorem}
In this course, equilibrium = reversible,
possibly up to a one-to-one transformation preserving the invariant measure.
\end{frame}
\begin{frame}
{Paradigmatic examples of nonequilibrium dynamics}
\begin{block}{Overdamped Langevin dynamics perturbed by a constant force term}
\begin{equation}
\label{eq:overdamped_Langevin_F}
\tag{NO}
\d q_t = - \grad V(q_t) \, \d t + \alert{\eta F} + \sqrt{2} \, \d W_t
\end{equation}
\end{block}
\begin{block}{Langevin dynamics perturbed by a constant force term}
\begin{equation}
\label{eq:Langevin_F}
\tag{NL}
\left\{
\begin{aligned}
\d q_t & = M^{-1} p_t \D t, \\*
\d p_t & = \bigl( -\nabla V(q_t) + {\red \eta F} \bigr) \D t - \gamma M^{-1} p_t \D t
+ \sqrt{2\gamma} \D W_t,
\end{aligned}
\right.
\end{equation}
In the rest of this section, we take {\blue $ M = \I$} for simplicity.
\end{block}
where
\begin{itemize}
\item $F \in \real^d$ with $\abs{F} = 1$ is a given direction
\item $\eta \in \real$ is the strength of the external forcing.
\end{itemize}
Is there an invariant probability measure?
\end{frame}
\begin{frame}
{When {\yellow $\eta = 0$}, these dynamics are reversible}
\begin{itemize}
\item For overdamped Langevin dynamics
\[
\mathcal L_{\rm ovd} \Big\vert_{\red \eta = 0} = - \grad V \cdot \grad + \laplacian
= - \grad^* \grad,
\qquad
\mu(\d q) = \frac{1}{Z} \e^{-V(q)} \, \d q.
\]
where $\grad^* := (\grad V - \grad) \cdot $.
For any $f, g \in C^{\infty}_{\rm c}(\mathcal E)$, we have
\[
\int_{\mathcal E} (\mathcal L_{\rm ovd} f ) g \, \d \mu
= - \int_{\mathcal E} \nabla f \cdot \nabla g \, \d \mu
= \int_{\mathcal E} (\mathcal L_{\rm ovd} g ) f \, \d \mu.
\]
\item For Langevin dynamics
\begin{align*}
\mathcal L\Big\vert_{\red \eta = 0}
= p \cdot \grad_q - \grad V \cdot \grad_p + \gamma \left( - p \cdot \grad_p + \laplacian_p \right)
= \grad_p^* \grad_q - \grad_q^* \grad_p - \gamma \grad_p^* \grad_p^*,
\end{align*}
where $\grad_q^* := (\grad V - \grad_q) \cdot $ and $\grad_p^* = (p -\grad_p) \cdot$ are the formal adjoints.
We have
\begin{align*}
\int_{\mathcal E} (\mathcal Lf ) g \, \d \mu
&= \int_{\mathcal E} g \left(\grad_p^* \grad_q - \grad_q^* \grad_p\right) f - \gamma \grad_p f \cdot \grad_p g \, \d \mu \\
&= \int_{\mathcal E} {\red -} f \left(\grad_p^* \grad_q - \grad_q^* \grad_p\right) g - \gamma \grad_p f \cdot \grad_p g \, \d \mu \\
&= \int_{\mathcal E} (f \circ S) \bigl(\mathcal L (g \circ S)\bigr) \, \d \mu
\qquad S f(q, p) := f(q, -p).
\end{align*}
\end{itemize}
\end{frame}
\begin{frame}
{Another example useful for thermal transport}
\begin{block}{Langevin dynamics with modified fluctuation}
\[
\left\{
\begin{aligned}
\d q_t & = M^{-1} p_t \, \d t, \\*
\d p_t & = -\nabla V(q_t) \, \d t - \gamma M^{-1} p_t \, \d t
+ \sqrt{2\gamma {\red T_\eta(q)}} \, \d W_t,
\end{aligned}
\right.
\]
\end{block}
with non-negative temperature
\[
T_\eta(q) = T_{\rm ref} + \eta \widetilde{T}(q)
\]
Typically, $\widetilde{T}$ constant and positive on $\mathcal D_+ \subset \mathcal C$,
and constant and negative on $\mathcal D_- \subset \mathcal D$.
\begin{itemize}
\item
Non-zero energy flux from $\mathcal D_+$ to $\mathcal D_-$ expected in the steady-state
\item
Simplified model of thermal transport (in 3D materials or atom chains)
\end{itemize}
\end{frame}
\begin{frame}
{Worked example in dimension one}
Consider the perturbed overdamped Langevin dynamics with~$q_t \in \torus$
\[
\d q_t = - V'(q_t) \, \d t + {\red \eta} \, \d t + \sqrt{2} \, \d W_t,
\]
The associated Fokker--Planck equation reads
\[
\frac{\d}{\d q}\left( \left(\frac{\d V}{\d q} - \eta\right) \rho_{\eta} + \frac{\d \rho_{\eta}}{\d q} \right) = 0.
\]
\begin{minipage}[t]{.45\textwidth}
\vspace{.5cm}
The solution is unique and given by
\[
\rho_{\eta}(q) \propto \e^{-V(q)} \int_{\torus} \e^{V(q+y) - \eta y} \, \d y.
\]
\textbf{Example:} $\rho_{\eta}$ with $V(q) = \frac{1}{2} (1 - \cos q)$.
\end{minipage}
\begin{minipage}[t]{.5\textwidth}
\end{minipage}
\begin{minipage}[t]{.45\textwidth}
\begin{figure}[ht]
\centering
\includegraphics[width=\linewidth]{figures/invariant_perturbed_ol.pdf}
\end{figure}
\end{minipage}
\end{frame}
\begin{frame}
{Nonequilibrium overdamped Langevin dynamics}
In general, how can we prove existence of an invariant measure for
\[
\d q_t = - \grad V(q_t) \, \d t + \alert{\eta F} + \sqrt{2} \, \d W_t \, ?
\]
\begin{itemize}
\item
If the state space is compact (e.g. $\torus^d$),
apply Doeblin's theorem.
\item
If not, use its generization, Harris' theorem.
\end{itemize}
\medskip
Fix ${\blue t = 1}$ and denote by $p\colon \mathcal E \times \mathcal B(\mathcal E)$ the Markov transition kernel
\[
p(x, A) := \proba \left[ q_t \in A \, \middle| \, q_0 = x \right].
\]
For an observable $\phi \colon \mathcal E \to \real$ and a probability measure $\mu$,
we let
\[
(\mathcal P \phi)(x) := \int_{\mathcal E} \phi(y) \, p(x, \d y),
\qquad
(\mathcal P^{\dagger} \mu)(A) := \int_{A} p(x, A) \, \mu(\d x).
\]
Note that $\mathcal P$ and $\mathcal P^{\dagger}$ are formally $L^2$ adjoints:
\[
\int_{\mathcal E} (\mathcal P \phi) \, \d \mu = \int_{\mathcal E} \phi \, \d (\mathcal P^\dagger \mu).
\]
\end{frame}
\begin{frame}
{Existence of an invariant measure for compact state space (1/2)}
Let $d(\placeholder, \placeholder)$ denote the total variation metric.
\begin{theorem}
[Doeblin's theorem]
If there exists $\alpha \in (0, 1)$ and a probability measure $\pi$ such that
\[
\forall \mu, \qquad
\mathcal P^{\dagger} \mu \geq \alpha \pi,
\qquad \text{ (Minorization condition) }
\]
then there exists $\mu_*$ such that $\mathcal P^{\dagger} \mu_* = \mu_*$.
Furthermore $d(\mathcal P^{\dagger^n} \mu, \mu_*) \leq \alpha^n d(\mu, \mu_*)$.
\end{theorem}
\emph{Sketch of proof.} Define the Markov transition kernel
\[
\widetilde {p}(x, \placeholder) := \frac{1}{1-\alpha} p(x, \placeholder) - \frac{\alpha}{1 - \alpha} \pi(\placeholder),
\]
Let $\mathcal F$ denote the set of measurable functions $\phi \colon \mathcal E \to [-1, 1]$.
We have
\begin{align*}
d(\mathcal P^\dagger \mu, \mathcal P^\dagger \nu)
&= \sup_{\phi \in \mathcal F} \int_{\mathcal E} \phi(q) (\mathcal P^{\dagger} \mu - \mathcal P^{\dagger} \nu) (\d q)
= \sup_{\phi \in \mathcal F} \int_{\mathcal E} \mathcal P \phi(q) \bigl(\mu - \nu\bigr) (\d q) \\
&= (1 - \alpha) \sup_{\phi \in \mathcal F} \int_{\mathcal E} \widetilde {\mathcal P} \phi(q) (\mu - \nu) (\d q)
\leq (1 - \alpha) \, d(\mu, \nu).
\end{align*}
Conclude using Banach's fixed point theorem.
\end{frame}
\begin{frame}
{Existence of an invariant measure for compact state space (2/2)}
Two simple corollaries:
\begin{itemize}
\item
Suppose that $\phi$ is uniformly bounded. Then
\begin{align*}
\left\lvert \mathcal P^n \phi(x) - \overline \phi \right\rvert
&= \int_{\mathcal E} \mathcal P^n (\phi - \overline \phi) \, \d(\delta_x - \mu_{*})
= \int_{\mathcal E} (\phi - \overline \phi) \, (\mathcal P^{\dagger n} \delta_x - \mathcal P^{\dagger n} \mu_{*}) (\d q) \\
&\leq \norm{\phi - \overline \phi}_{L^{\infty}} (1-\alpha)^n d(\delta_x, \mu_{*})
\leq 2 \norm{\phi - \overline \phi}_{L^{\infty}} (1 - \alpha)^n.
\end{align*}
This shows that
\[
\left\lVert \mathcal P^n \phi(x) - \overline \phi \right\rVert_{L^{\infty}}
\leq 2 (1 - \alpha)^n \norm{\phi - \overline \phi}_{L^{\infty}}.
\]
\item
The Neumann series $\I + \mathcal P + \mathcal P^2 + \dotsb$ is convergent as a bounded operator on
\[
L^{\infty}_{*} := \left\{ \phi \in L^{\infty}(\mathcal E) : \int_{\mathcal E} \phi \, \d \mu_{*} = 0 \right\}.
\]
Thus $\I - \mathcal P$ is invertible on~$L^{\infty}_{*}$ and
\[
(\I - \mathcal P)^{-1} = \I + \mathcal P + \mathcal P^2 + \dotsb
\]
\end{itemize}
\end{frame}
\begin{frame}
{Connection with the time-continuous setting}
Consider the overdamped Langevin dynamics on~$\torus^d$:
\[
\d q_t = - \grad V(q_t) \, \d t + \alert{\eta F \, \d t} + \sqrt{2} \, \d W_t,
\qquad q_t \in \torus^d.
\]
\begin{itemize}
\itemsep.5cm
\item
The \textbf{minorization condition} is satisfied.
Indeed for $t > 0$
\begin{align*}
p(x, A)
&= \expect \left[ q_t \in A \, \middle| \, q_0 = x \right]
= \expect \left[ \mathds 1_{A} \left(x + W_t \right) M_t \right]
&& M_t = \text{Girsanov weight} \\
&= \proba \left[ x + W_t \in A \right] \expect \left[ M_t \, | \, \{x + W_t \in A\} \right] \\
&\geq C \proba \left[ x + W_t \in A \right] \geq C \lambda(A) && \lambda := \text{Lebesgue measure}.
\end{align*}
and additionally ${\rm Law} (q_t)$ is smooth by parabolic regularity.
\item
\textbf{Decay of the semigroup}:
For $t \in [0, \infty)$ and $\varphi \in L^{\infty}_*$, it holds that
\begin{align*}
\lVert \e^{t \mathcal L_{\rm ovd}} \varphi \rVert_{L^{\infty}}
&= \left\lVert \e^{(t- \lfloor t \rfloor) \mathcal L_{\rm ovd}} \left( \e^{\lfloor t \rfloor \mathcal L_{\rm ovd}} \varphi \right) \right\rVert_{L^{\infty}} \\
&\leq \left\lVert \e^{\lfloor t \rfloor \mathcal L_{\rm ovd}} \varphi \right\rVert_{L^{\infty}}
\leq 2 \e^{\alpha} \e^{- \alpha t} \lVert \varphi \rVert_{L^{\infty}}.
\end{align*}
\item
\textbf{Corollary}: $\mathcal L_{\rm ovd}$ is invertible on~$L^{\infty}_{*}$,
and
\[
\mathcal L_{\rm ovd}^{-1}
= - \int_{0}^{\infty} \e^{t \mathcal L_{\rm ovd}} \, \d t.
\]
\end{itemize}
\end{frame}
\begin{frame}
{Existence of an invariant measure for perturbed Langevin dynamics}
Consider the paradigmatic dynamics
\begin{align*}
\d q_t &= M^{-1} p_t \, \d t, \\
\d p_t &= - \grad V(q_t) \, \d t + {\red \eta F \, \d t} - \gamma p_t \, \d t + \sqrt{2 \gamma} \, \d W_t,
\end{align*}
where $(q_t, p_t) = \torus^d \times \real^d$ and $F \in \real^d$ with $\abs{F} = 1$ is a given direction.
\begin{figure}[ht]
\centering
\includegraphics[width=0.39\linewidth]{figures/intro_position.pdf}
\includegraphics[width=0.39\linewidth]{figures/intro_velocity.pdf}
\caption{%
Marginals of the steady state solution of the Langevin dynamics with forcing
}
\end{figure}
\end{frame}
\begin{frame}
{Harris' theorem}
Let $p(x, A)$ denote a Markov transition kernel and let
\[
(\mathcal P \phi)(x) := \int_{\mathcal E} \phi(y) \, p(x, \d y),
\qquad
(\mathcal P^{\dagger} \mu)(A) := \int_{A} p(x, A) \, \mu(\d x).
\]
\begin{theorem}
[Harris's theorem]
Suppose that the following conditions are satisfied:
\begin{itemize}
\item
There exists $\mathcal K\colon \mathcal E \to [1, \infty)$
and constants~$a > 0$ and $b \geq 0$ such that
\[
\forall x \in \mathcal E, \qquad
\mathcal L \mathcal K(x) \leq - a \mathcal K(x) + b,
\]
\item
There exists a constant $\alpha \in (0, 1)$ and a probability measure~$\pi$ such that
\[
\inf_{x \in \mathcal C} p(x, \d y) \geq \, \alpha \, \pi(\d y),
\]
where $\mathcal C = \{x \in \real \, | \, \mathcal K(x) \leq K_{\max} \}$ for some $K_{\max} \geq 1 + 2 \, \frac{b}{a}$.
\end{itemize}
Then there $\exists! \, \, \mu_{*}$ such that $\mathcal P^{\dagger} \mu_{*} = \mu_{*}$.
Furthermore there is $\gamma \in (0, 1)$ such that
\[
\left\lVert \frac{\mathcal P^n \phi - \overline \phi}{\mathcal K} \right\rVert_{L^{\infty}}
\leq C \gamma^n \norm{ \frac{\mathcal P^n \phi - \overline \phi}{\mathcal K} }_{L^{\infty}},
\qquad \overline \phi := \int_{\mathcal E} \phi \, \d \mu_*.
\]
\end{theorem}
\end{frame}
\begin{frame}
{Application to perturbed Langevin dynamics}
For $\mathcal K \colon \mathcal E \to [1, \infty)$, let
\[
L^{\infty}_{\mathcal K}
:= \left\{ \varphi \text{~measureable } : \norm{\frac{\varphi}{\mathcal K}}_{L^{\infty}} < \infty \right\}
\]
\begin{theorem}
Fix~$\eta > 0$ and $n \geq 2$,
and let $\mathcal K_n(q, p) := 1 + \abs{p}^n$.
There exists a unique invariant probability measure,
with a smooth density~$\psi_{\eta}(q, p)$ with respect to the Lebesgue measure.
Furthermore there exists $C = C(n, \eta) > 0$ and $\lambda = \lambda(n, \eta) > 0$ such that
\[
\forall \phi \in L^{\infty}_{\mathcal K_n}(\mathcal E), \qquad
\left\lVert \e^{t \mathcal L_n} \phi - \int_{\mathcal E} \phi \, \psi_{\eta} \right\rVert_{L^{\infty}_{\mathcal K_n}}
\leq C \e^{-\lambda t} \left\lVert \phi - \int_{\mathcal E} \phi \, \psi_{\eta} \right\rVert_{L^{\infty}_{\mathcal K_n}}
\]
\end{theorem}
\textbf{Idea of the proof.}
Show that the assumptions of Harris' theorem are satisfied,
in particular that
\begin{align*}
\mathcal L \mathcal K_n &\leq - a \mathcal K_n(q, p) + b,
\end{align*}
for $a > 0$ and $b \geq 0$.
\end{frame}
\begin{frame}
{Perturbation expansion for {\yellow $\eta$ sufficiently small} (1/2)}
Consider the perturbed Langevin dynamics and write
\[
\mathcal L_{\eta} = \mathcal L_0 + {\red \eta \widetilde {\mathcal L}},
\qquad \widetilde {\mathcal L} = F \cdot \grad_p
\]
It is {\red expected} that $\psi_\eta = f_\eta\psi_0$ with $\psi_0(q,p) = Z^{-1} \e^{-\beta H(q,p)}$ and
\[
f_\eta = \mathbf{1} + \eta \mathfrak{f}_1 + \mathcal O(\eta^2)
\]
The invariance of $\psi_\eta$ can be written as
\[
\int_{\mathcal E} (\mathcal L_\eta \varphi) \psi_\eta = 0 = \int_{\mathcal E} (\mathcal L_\eta \varphi) f_\eta \psi_0
\]
\begin{block}{Fokker-Planck equation on $L^2(\psi_0)$}
\[
\mathcal L_\eta^* f_\eta = 0
\]
Observe that $\mathcal L_{\eta}^* = \mathcal L_0^* + \widetilde {\mathcal L}^*$ with
\[
\mathcal L_0^* = - \grad_p^* \grad_q + \grad_q^* \grad_p - \gamma \grad_p^* \grad_p^*,
\qquad \widetilde {\mathcal L}^* \placeholder = \grad_p^* (F \placeholder)
\]
\end{block}
{\bf Questions:} Can the expansion for $f_\eta$ be made rigorous? What is $\mathfrak{f}_1$?
\end{frame}
\begin{frame}
{Perturbation expansion for {\yellow $\eta$ sufficiently small} (2/3)}
\begin{block}
{Formal asymptotics}
Write $f_\eta = \mathfrak f_0 + \eta \mathfrak{f}_1 + \eta^2 \mathfrak{f}_2 + \dotsb$ and expand
\begin{align*}
\mathcal L_{\eta}^* f_{\eta}
&= \mathcal L_0^* \mathfrak f_0 \\
&\quad + \eta \left(\widetilde {\mathcal L}^* \mathfrak f_0 + \mathcal L_0^* \mathfrak f_1\right) \\
&\quad + \eta^2 \left(\widetilde {\mathcal L}^* \mathfrak f_1 + \mathcal L_0^* \mathfrak f_2\right) \\
&\quad + \eta^3 \left(\widetilde {\mathcal L}^* \mathfrak f_2 + \mathcal L_0^* \mathfrak f_3\right) + \dotsb
\end{align*}
This suggests that $\mathfrak f_{i+1} = -(\mathcal L_0^*)^{-1} (\widetilde {\mathcal L}^* \mathfrak f_i)$ and so
\[
f_\eta = \sum_{i=0}^{\infty} (-\eta)^i \Bigl((\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^*\Bigr)^i \mathbf 1
= \left(\I + \eta(\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^* \right)^{-1} \mathbf 1.
\]
\end{block}
\end{frame}
\begin{frame}
{Elements of proof}
Let us introduce
\[
H^1_{p}(\psi_0) =
\Bigl\{ \varphi \in L^2(\psi_0) : \grad_p \varphi \in L^2(\psi) \Bigr\},
\qquad \| \varphi \|_{H^1_{p}(\psi_0)}^2 = \| \varphi \|_{L^2(\psi_0)}^2 + \| \nabla_p \varphi \|_{L^2(\psi_0)}^2.
\]
\vspace{-.3cm}
\begin{itemize}
\itemsep.2cm
\item
The operator {\blue $\widetilde {\mathcal L}^*\colon H^1_p(\psi_0) \to L^2_0(\psi)$} is well-defined and bounded.
Indeed
\[
\lVert \widetilde {\mathcal L}^* \varphi \rVert_{L^2_0(\psi_0)}^2
= \ip{\nabla_p^* F \varphi}{\nabla_p^* F \varphi}_{L^2_0(\psi_0)}
\leq \lVert \varphi \rVert_{H^1_p(\psi_0)}^2
\]
and
\[
\int_{\mathcal E} \widetilde {\mathcal L}^* \phi \, \psi_0
= \int_{\mathcal E} \nabla_p^* (F \phi) \, \psi_0 = 0.
\]
\item
The operator {\blue $(\mathcal L_0^*)^{-1} \colon L^2_0(\psi_0) \to H^1_p(\psi_0)$} is well-defined and bounded,
by {\red hypocoercivity} and {\red hypoelliptic regularization}.
% In particular, for $\phi = (\mathcal L_0^*)^{-1} \varphi$
% \begin{align*}
% \| \phi \|_{L^2(\psi_0)}^2
% + \| \nabla_p \phi \|_{L^2(\psi_0)}^2
% &= \|(\mathcal L_0^*)^{-1} \varphi \|_{L^2(\psi_0)}^2
% + \frac{1}{\gamma} \ip{-\mathcal L_0^* \phi}{\phi}_{L^2(\psi_0)} \\
% &\leq \frac{1}{\gamma} \norm{(\mathcal L_0^*)^{-1}}_{\mathcal B\bigl(L^2(\psi_0)\bigr)}^2
% \norm{\varphi}_{L^2(\psi_0)}
% \end{align*}
\item Invariance of $f_\eta$ by $\mathcal L_\eta^* = \mathcal L_0^* + \eta \wcL^*$
\vspace{-0.2cm}
\[
\mathcal L_\eta^* f_\eta = \mathcal L_0^* \left(1 + \eta (\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^* \right) f_\eta = \mathcal L_0^* \mathbf{1} = 0.
\]
\item {\red Prove that $f_\eta \geq 0$}.
\end{itemize}
\end{frame}
\begin{frame}
{Perturbation expansion for {\yellow $\eta$ sufficiently small} (3/3)}
\begin{block}{Power expansion of the invariant measure}
Spectral radius $r$ of the bounded operator
$(\wcL \mathcal L_0^{-1})^* \in \mathcal{B}(L_0^2(\psi_0))$:
\[
r = \lim_{n \to +\infty} \left\| \left[ \left(\wcL \mathcal L_0^{-1}\right)^* \right]^n \right\|^{1/n}.
\]
Then, for $|\eta| < r^{-1}$, the unique invariant measure can be written as $\psi_\eta = f_\eta\psi_0$,
where~$f_\eta \in L^2(\psi_0)$ can be expanded as
\begin{equation}
\label{eq:expansion_psi_xi_general}
f_\eta = \left( 1+\eta (\wcL \mathcal L_0^{-1})^* \right)^{-1} \mathbf{1}
= \biggl( 1 + \sum_{n=1}^{+\infty} (-\eta)^n
[ (\wcL \mathcal L_0^{-1})^* ]^n \biggr) \mathbf{1}.
\end{equation}
\end{block}
Note that $\dps \int_{\mathcal E} \psi_\eta = 1$.
\end{frame}
\section{Computation of transport coefficients}
\begin{frame}
\begin{center}
\Large
\color{blue}
Part II: Definition and calculation of the mobility
\end{center}
\centering
\begin{minipage}{.6\textwidth}
\begin{itemize}
\item Definition through linear response
\item Green--Kubo reformulation
\item Link with effective diffusion
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
{Computation of transport coefficients}
Three main classes of methods:
\begin{itemize}
\itemsep.2cm
\item
Non-equilibrium techniques.
\begin{itemize}
\item Calculations from the steady state of a system out of equilibrium.
\item Comprises bulk-driven and boundary-driven approaches.
\end{itemize}
\item
Equilibrium techniques based on the Green--Kubo formula
\[
\rho = \int_{0}^{\infty} \expect_{\mu} \bigl[\varphi(x_t) \phi(x_0)\bigr] \, \d t.
\]
We will derive this formula from linear response.
\item
Transient methods.
\begin{itemize}
\item System locally perturbed
\item Relaxation of this perturbation enables to calibrate macroscopic model.
\end{itemize}
\end{itemize}
We illustrate the first two for the simplest transport coefficient:
the {\blue mobility}.
\end{frame}
\begin{frame}
{Linear response of nonequilibrium dynamics}
Consider the nonequilibirium dynamics
\begin{align*}
\d q_t &= M^{-1} p_t \, \d t, \\
\d p_t &= - \grad V(q_t) \, \d t + {\red \eta F \, \d t} - \gamma p_t \, \d t + \sqrt{2 \gamma} \, \d W_t,
\end{align*}
\begin{itemize}
\item The force {\red $\eta F$} induces a non-zero velocity in the direction $F$
\item Encoded by $\dps \expect_\eta(R) = \int_{\mathcal E} R \, \psi_\eta$ with $\dps R(q,p) = F^\t p$
\end{itemize}
\begin{definition}
[Mobility]
The mobility in direction $F$ is defined mathematically as
\[
\rho_{F} =
\lim_{\alert{\eta} \to 0} \frac{\expect_{\red \eta} [R] - \expect_{0} [R]}{\red \eta}
= \lim_{\eta \to 0} \frac{1}{\alert{\eta}}\expect_{\red \eta} [R]
\]
\end{definition}
We proved that $\psi_\eta = f_\eta\psi_0$ with $\psi_0(q,p) = Z^{-1} \e^{-\beta H(q,p)}$ and
\[
f_\eta = \mathbf{1} + \eta \mathfrak{f}_1 + \mathrm{O}(\eta^2), \qquad \mathfrak f_1 = - (\mathcal L_0^*)^{-1} \widetilde {\mathcal L}^* \mathbf 1.
\]
Therefore
\[
\rho_F = \int_{\mathcal E} R \mathfrak{f}_1 \psi_0
= -\int_{\mathcal E} \left(\mathcal L_0^{-1} R\right) (\widetilde {\mathcal L}^* \mathbf 1) \, \psi_0
\]
\end{frame}
\begin{frame}
{Numerical results (1)}
\begin{figure}
\centering
\includegraphics[width=.75\textwidth]{figures/LR.eps}
\end{figure}
\end{frame}
\begin{frame}
{Numerical results (2)}
\begin{figure}
\centering
\includegraphics[width=.75\textwidth]{figures/mobilityFctGamma.pdf}
\caption{Mobility as a function of~$\gamma$~\footnote{See J.~Roussel and G.~Stoltz, \emph{ESAIM: M2AN} (2018)}}
\end{figure}
\end{frame}
\begin{frame}
{Reformulation as integrated correlation functions}
Define the conjugate response
\[
S
= \wcL^* \mathbf{1}
= \nabla_p^* (F \mathbf 1)
= F^\t p.
\]
\begin{block}{Green--Kubo formula}
For any $R \in L^2_0(\psi_0)$,
\[
\lim_{\eta \to 0} \frac{\expect_\eta(R)}{\eta} = \int_0^{+\infty} \expect_0 \Big(R(q_t,p_t)S(q_0,p_0) \Big) d t,
\]
where $\expect_\eta$ is w.r.t.\ to $\psi_\eta(q,p)\, \d q\, \d p$,
while $\expect_0$ is w.r.t.\ initial conditions~$(q_0,p_0) \sim \psi_0$ and over all realizations of the equilibrium dynamics.
\end{block}
For the mobility,
it holds $S(q,p) = R(q,p) = F^\t p$ and so
\[
\rho_F = \lim_{\eta \to 0} \frac{\dps \expect_\eta \bigl(F^\t p \bigr)}{\eta}
= \int_0^{+\infty} \expect_0 \Big( \bigl(F^\t p_t\bigr) \bigl(F^\t p_0\bigr) \Big) \, \d t
\]
\end{frame}
\begin{frame}
{Elements of proof}
\bu Proof based on the following equality on $\mathcal{B}\bigl(L_0^2(\psi_0)\bigr)$
\[
-\mathcal L_0^{-1} = \int_0^{+\infty} \mathrm{e}^{t \mathcal L_0} \, \d t.
\]
\bu Then,
\begin{align*}
\lim_{\eta \to 0} \frac{\expect_\eta(R)}{\eta} & = -\int_{\mathcal E} R \left[(\wcL \mathcal L_0^{-1})^* \mathbf{1}\right] \psi_0
= -\int_{\mathcal{E}} [\mathcal L_0^{-1}R ] [\wcL^* \mathbf{1} ] \, \psi_0 \\
& = \int_0^{+\infty} \left( \int_{\mathcal{E}} \left(\mathrm{e}^{t \mathcal L_0} R\right) \, S \, \psi_0\right) \d t \\
& = \int_0^{+\infty} \expect \Big( R(q_t,p_t)S(q_0,p_0) \Big) \, \d t
\end{align*}
\bu Note also that $S$ has average 0 w.r.t.\ invariant measure since
\[
\int_\cX S \, \d\pi = \int_\cX \wcL^* \mathbf{1} \, \d\pi = \int_\cX \wcL\mathbf{1} \, \d\pi = 0
\]
\end{frame}
\begin{frame}
{Connection with effective diffusion}
It is possible to show a {\blue functional central limit theorem} for the Langevin dynamics:
\begin{equation*}
\varepsilon \widetilde {q}_{s/\varepsilon^2} \xrightarrow[\varepsilon \to 0]{} \sqrt{2 \mat D} \, W_s
\qquad \text{weakly on } C([0, \infty)), \qquad \widetilde {q}_t := q_0 + \int_{0}^{t} p_s \, \d s \in {\blue \real^{d}}.
\end{equation*}
In particular, $\widetilde {q}_t /\sqrt{t} \xrightarrow[t \to \infty]{} \mathcal N(0, 2 \mat D)$ weakly.
\vspace{-.25cm}
\begin{figure}[ht]
\centering
\href{run:videos/gle/effective-diffusion.webm?autostart&loop}%
{\includegraphics[width=0.75\textwidth]{videos/gle/effective-diffusion.png}}%
\caption{Histogram of $q_t/\sqrt{t}$. The potential $V(q) = - \cos(q) / 2$ is illustrated in the background.}
\end{figure}
\end{frame}
\begin{frame}
{Mathematical expression for the effective diffusion (dimension 1)}
\vspace{.2cm}
\begin{block}{Expression of $D$ in terms of the solution to a Poisson equation}
Effective diffusion tensor given by $D = \ip{\phi}{p}_{L^2(\mu)}$ and $\phi$ is the solution to
\[
- \mathcal L \phi = p,
\qquad \phi \in L^2_0(\mu).
\]
\end{block}
\textbf{Key idea of the proof:} Apply It\^o's formula to $\phi$
\begin{align*}
\d \phi(q_s, p_s)
% &= \frac{1}{\varepsilon^2} \mathcal L_{L} \phi (q_t, p_t) + \frac{1}{\varepsilon} \, \sqrt{2 \gamma \beta^{-1}} \, \derivative{1}[\phi]{p}(q_t, p_t) \, \d W_t, \\
&= - p_s \, \d s + \sqrt{2} \, \derivative{1}[\phi]{p}(q_s, p_s) \, \d W_s
\end{align*}
and then rearrange:
\begin{align*}
\alert\varepsilon (\widetilde q_{t/\alert\varepsilon^2} - \widetilde q_{0}) &= \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} p_s \, \d s \\
&= \underbrace{\alert\varepsilon \bigl(\phi(q_0, p_0) - \phi(q_{t/\alert\varepsilon^2}, p_{t/\alert\varepsilon^2})\bigr)}_{\to 0
% ~\text{in $L^p(\Omega, C([0, T], \real))$}
}
+ \underbrace{\sqrt{2 \gamma} \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} \derivative{1}[\phi]{p}(q_s, p_s) \, \d W_s}_{\to \sqrt{2 D} W_t~\text{weakly by MCLT}}.
\end{align*}
% where
% \begin{align*}
% D &= \gamma \beta^{-1} \, \int \abs{\textstyle \derivative{1}[\phi]{p}(q, p)}^2 \, \mu(\d q \, \d p)
% = - \int \phi (\mathcal L \phi) \, \d \mu
% = \ip{\phi}{p}.
% \end{align*}
\textbf{In the multidimensional setting}, $D_{F} = \ip{\phi_{F}}{F^\t p}$ with $- \mathcal L \phi_{F} = F^\t p$.
\textbf{Einstein's relation:} we just showed
\(
D_F = \beta^{-1} \rho_F.
\)
\end{frame}
\begin{frame}
{Summary: numerical approaches for calculating the mobility}
\begin{itemize}
\itemsep.5cm
\item {\blue Linear response approach}:
\begin{equation*}
\rho_F = \lim_{\eta \to 0} \frac{1}{\alert{\eta}} \expect_{\alert{\eta}} \, \bigl[F^\t p\bigr].
\end{equation*}
where $\mu_{\eta}$ is the invariant distribution of the system with external forcing.
\item {\blue Einstein's relation}:
\[
\rho_F = \lim_{t \to \infty} \frac{1}{2t} \expect_{\mu} \Bigl[ \bigl| F^\t (\widetilde {q}_t - q_0)\bigr|^2 \Bigr].
\]
\item Deterministic method, e.g. {\blue Fourier/Hermite Galerkin}, for the Poisson equation
\[
- \mathcal L_0 \phi_{F} = F^\t p, \qquad \rho_F = \ip{\phi_F}{F^\t p}.
\]
\item {\blue Green--Kubo formula}:
\begin{align*}
\rho_F &= \int_{0}^{\infty} \expect_{\blue 0}\bigl((F^\t p_0) (F^\t p_t)\bigr) \, \d t.
\end{align*}
\end{itemize}
\end{frame}
\begin{frame}
\begin{center}
\Large
\color{blue}
Part III: Computation of other transport coefficients
\end{center}
\centering
\begin{minipage}{.6\textwidth}
\begin{itemize}
\item Thermal conductivity
\item Shear viscosity
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
{Thermal transport in one-dimensional chain (1)}
Consider a chain of $N$ atoms with nearest-neighbor interactions
\begin{tikzpicture}
\coordinate (origin) at (0,0);
\coordinate (shift) at (1.8,0);
\node [draw, color=red!60, fill=red!5, very thick, rectangle, minimum height=1cm] (nc) at (0,0) {$T_L$};
\node [draw, color=blue!60, fill=blue!5, very thick, rectangle, minimum height=1cm] (nh) at ($ (origin) + 6*(shift) $) {$T_R$};
\node [draw, color=black!60, fill=gray!5, very thick, circle, minimum size=1cm] (n1) at ($ (origin) + 1*(shift) $) {$p_1$};
\node [draw, color=black!60, fill=gray!5, very thick, circle, minimum size=1cm] (n2) at ($ (origin) + 2*(shift) $) {$p_2$};
\node [draw=none, circle, minimum size=1cm] (n3) at ($ (origin) + 3*(shift) $) {$\dotsb$};
\node [draw, color=black!60, fill=gray!5, very thick, circle, minimum size=1cm] (n-2) at ($ (origin) + 4*(shift) $) {$p_{N-1}$};
\node [draw, color=black!60, fill=gray!5, very thick, circle, minimum size=1cm] (n-1) at ($ (origin) + 5*(shift) $) {$p_{N}$};
\draw[decoration={aspect=0.3, segment length=1mm, amplitude=1.5mm,coil},decorate] (n1) -- node[below=.25cm]{$r_1$} (n2);
\draw[decoration={aspect=0.3, segment length=1mm, amplitude=1.5mm,coil},decorate] (n2) -- node[below=.25cm]{$r_2$} (n3);
\draw[decoration={aspect=0.3, segment length=1mm, amplitude=1.5mm,coil},decorate] (n3) -- node[below=.25cm]{$r_{N-2}$} (n-2);
\draw[decoration={aspect=0.3, segment length=1mm, amplitude=1.5mm,coil},decorate] (n-2) -- node[below=.25cm]{$r_{N-1}$} (n-1);
\draw[red, ->] (nc) to [out=45,in=135] node[above]{$j_0$} (n1);
\draw[red, ->] (n1) to [out=45,in=135] node[above]{$j_1$} (n2);
\draw[red, ->] (n2) to [out=45,in=135] node[above]{$j_2$} (n3);
\draw[red, ->] (n3) to [out=45,in=135] node[above]{$j_{N-2}$} (n-2);
\draw[red, ->] (n-2) to [out=45,in=135] node[above]{$j_{N-1}$} (n-1);
\draw[red, ->] (n-2) to [out=45,in=135] node[above]{$j_{N-1}$} (n-1);
\draw[red, ->] (n-1) to [out=45,in=135] node[above]{$j_{N}$} (nh);
\end{tikzpicture}
Mathematical model:
\begin{equation*}
\left\{ \begin{aligned}
\d r_n &= (p_{n+1} - p_n) \, \d t, \\
\d p_1 &= v'(r_1) \, \d t - \gamma p_1 \dt + \sqrt{2 \gamma {\color{red} (T+\Delta T)}} \, \d W_t^L, \\
\d p_n &= \bigl(v'(r_n) - v'(r_{n-1})\bigr) \, \d t, \\
\d p_N &= -v'(r_{N-1}) \, \d t - \gamma p_N \dt + \sqrt{2 \gamma {\color{blue} (T-\Delta T)}} \, \d W_t^R,
\end{aligned} \right.
\end{equation*}
The Hamiltonian of the system is the sum of the potential and kinetic energies:
\begin{equation*}
H(r,p) = V(r) + \sum_{n=1}^N \frac {p_n^2}{2},
\quad V(r) = \sum_{n=1}^{N-1} v(r_n).
\end{equation*}
\end{frame}
\begin{frame}
{Thermal transport in one-dimensional chains (2)}
\begin{itemize}
\item
When ${\red \Delta T} = 0$,
invariant distribution given by
\[
\pi(\d r \, \d p) = Z_\beta^{-1} \exp\left(- \beta \left( \frac {|p|^2} {2} + V(r) \right)\right) \, \d r \, \d p,
\qquad \beta = T^{-1}.
\]
\item
Generator of the dynamics:
\begin{equation*}
\begin{aligned}
\mathcal L
&= \sum_{n=1}^{N-1} (p_{n+1} - p_n) \partial_{r_n}
+ \sum_{n=1}^N \Bigl(v'(r_n) - v'(r_{n-1})\Bigr) \partial_{p_n} \\
&\qquad - \gamma p_1 \partial_{p_1} + \gamma T \partial_{p_1}^2 - \gamma p_N \partial_{p_N} + \gamma T \partial_{p_N}^2
+ {\red \gamma \Delta T (\partial_{p_1}^2 - \partial_{p_N}^2)}.
\end{aligned}
\end{equation*}
The {\red perturbation} $\widetilde {\mathcal L} = \gamma( \partial_{p_1}^2 - \partial_{p_N}^2)$
is not bounded relatively to $\mathcal L_0$...
\vspace{.5cm}
$\rightarrow$ Existence/uniqueness of the invariant measure more difficult to prove\footnote{P. Carmona, \emph {Stoch. Proc. Appl.} (2007)}
\end{itemize}
\end{frame}
\begin{frame}
{Thermal transport in one-dimensional chains (3)}
\bu Response function: {\blue total energy current}
\begin{block}
{Definition of the heat flux}
\[
J = \frac{1}{N-1}\sum_{n=1}^{N-1} j_{n},
\qquad
j_{n} = -v'(r_n)\frac{p_n+p_{n+1}}{2}
\]
\end{block}
\smallskip
\bu Motivation: Local conservation of the energy (in the bulk $2 \leq n \leq N-1$)
\[
\frac{\d\varepsilon_n}{\d t} =
\mathcal L \varepsilon_n = j_{i-1} - j_{i},
\qquad
\varepsilon_n = \frac{p_n^2}{2} + \frac12 \Big( v(r_{i-1}) + v(r_n) \Big)
\]
\bu Definition of the {\blue thermal conductivity}: linear response
\[
\kappa_N = \lim_{\Delta T \to 0} \frac{(N-1)}{2\Delta T} \expect_{\Delta t} [J].
\]
\end{frame}
\begin{frame}
{Shear viscosity in fluids (1)}
Consider a fluid $\mathcal{D} = \left( L_x\mathbb{T} \times L_y\mathbb{T} \right)^N$ subjected to a sinusoidal forcing
\begin{figure}
\centering
\includegraphics[height=.5\textwidth]{figures/osc_shear.eps}
\end{figure}
Suppose that the box contains $N$ particles of mass $m$,
each subjected to a force $F$.
\end{frame}
\begin{frame}
{Shear viscosity in fluids (2)}
Macroscopic description by Navier--Stokes equation
\[
\rho \left( \frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) - \nu \, \laplacian \mathbf{u} = \frac{\rho}{m} F(y) \, \mathbf{e_x}
\]
Substitution of steady state ansatz $\mathbf{u} = U_x(y) \, \mathbf e_x$ gives
\[
- \nu U_x''(y) = \overline{\rho} F(y), \qquad \overline \rho := \frac{\rho}{m} = \frac{N}{|\mathcal D|}
\]
Therefore, for the test function~$g(y) = \e^{2i\pi \frac{y}{L_y}}$
\[
\nu \int_0^{L_y} U_x(y) g''(y) \, \d y = \overline{\rho} \int_{0}^{L_y} F(y) g(y) \, \d y
\]
$\rightarrow$ Suggests estimating the shear viscosity from molecular dynamics as
\[
\nu = \frac{\dps \frac{\overline{\rho}}{L_y}\int_{0}^{L_y} F(y) g(y) \, \d y}
{\dps \expect_{F} \left[ \frac{1}{N}\sum_{n=1}^{N} \frac{p_{xi}}{m} g''(q_{yi}) \right]}.
\]
\end{frame}
\begin{frame}
{Shear viscosity in fluids (2)}
Assume pairwise interactions
\[
V(q) = \sum_{1 \leq i < j \leq N} \mathcal V(\abs{q_i - q_j}).
\]
\bu Add a smooth {\blue nongradient force} in the $x$ direction, depending on~$y$
\begin{block}{Langevin dynamics under flow}
\centerequation{\left \{ \begin{aligned}
\d q_{i,t} &= \frac{p_{i,t}}{m} \, \d t,\\
\d p_{xi,t} &= -\nabla_{q_{xi}} V(q_t) \, \d t + {\red \eta F(q_{yi,t}) \, \d t}
- \gamma \frac{p_{xi,t}}{m} \, \d t + \sqrt{\frac{2\gamma}{\beta}} \, \d W^{xi}_t, \\
\d p_{yi,t} &= -\nabla_{q_{yi}} V(q_t) \, \d t - \gamma \frac{p_{yi,t}}{m} \, \d t
+ \sqrt{\frac{2\gamma}{\beta}} \, \d W^{yi}_t.
\end{aligned} \right.
}
\end{block}
\smallskip
\bu {\red Existence/uniqueness of a smooth invariant} measure provided $\gamma>0$
\smallskip
\bu The perturbation $\dps \wcL = \sum_{i=1}^N \! F(q_{y,i}) \partial_{p_{x,i}}$ is $\mathcal{L}_0$-bounded
\end{frame}
\begin{frame}
{Shear viscosity in fluids (3)}
\bu {\blue Linear response}:
\[
\lim_{\eta \rightarrow 0} \frac{\expect_{\eta} [\mathcal L_0 h]}{\eta}
= - \frac{\beta}{m} \!
\left\langle \!h, \sum_{i=1}^N p_{xi} F(q_{yi}) \!\right\rangle_{L^2(\psi_0)}.
\]
\bu Average {\red longitudinal velocity}
$u_x(Y) = \dps \lim_{\varepsilon \to 0}
\lim_{\eta \to 0} \frac{\expect_{\eta} \left[ U_x^\varepsilon(Y,\cdot) \right]}{\eta}$
where
\vspace{-0.3cm}
\[
U_x^\varepsilon(Y,q,p) = \frac{L_y}{Nm}\sum_{i=1}^N p_{xi}
\chi_{\varepsilon}\left(q_{yi}-Y\right)
\]
\vspace{-0.5cm}
\bu Average {\red off-diagonal stress}
$\dps \sigma_{xy}(Y) = \lim_{\varepsilon \to 0}
\lim_{\eta \to 0} \frac{\expect_{\eta} [...]}{\eta}$,
where
\vspace{-0.4cm}
\[
\hspace{-0.1cm}
... =
\frac{1}{L_x} \left( \sum_{i=1}^N \frac{p_{xi} p_{yi}}{m}\chi_{\varepsilon}\left(q_{yi}-Y\right)
- \! \! \! \! \! \! \! \!
\sum_{1 \leq i < j \leq N} \! \! \! \!
v'(|q_i-q_j|)\frac{ q_{xi}-q_{xj}}{|q_i-q_j|}
\!\int_{q_{yj}}^{q_{yi}} \!\chi_{\varepsilon}(s-Y) \, ds \right)
\]
\bu {\blue Local conservation} of momentum\footnote{Irving and Kirkwood, {\it J. Chem. Phys.} {\bf 18} (1950)}: replace $h$ by $U_x^\varepsilon$ (with $\overline{\rho} = N/|\mathcal{D}|$)
\[
\frac{d\sigma_{xy}(Y)}{dY} + \gamma_{x} \overline{\rho} u_x(Y) = \overline{\rho} F(Y)
\]
\end{frame}
\begin{frame}
{Shear viscosity in fluids (4)}
\bu {\blue Definition} $\sigma_{xy}(Y) := -\eta(Y)\dfrac{du_x(Y)}{dY}$, {\red closure} assumption $\eta(Y) = \eta > 0$
\begin{block}{Velocity profile in Langevin dynamics under flow}
\centerequation{-\eta u_x''(Y) + \gamma \overline{\rho} u_x(Y) = \overline{\rho} F(Y)}
\end{block}
\begin{figure}[ht]
\centering
\includegraphics[width=\linewidth]{figures/shear1.png}
\end{figure}
\end{frame}
% \begin{frame}
% \end{frame}
\begin{frame}
\begin{center}
\Large
\color{blue}
Part IV: Error estimates on the estimation of transport coefficients
\end{center}
\centering
\begin{minipage}{.8\textwidth}
\begin{itemize}
\item Reminders: strong order, weak order
\item Error analysis for the linear response method
\item Error analysis for Green--Kubo method
\end{itemize}
\end{minipage}
\end{frame}
\begin{frame}
{Reminder: Error estimates in Monte Carlo simulations}
Consider the general SDE
\[
\d x_t = b(x_t)\,\d t + \sigma(x_t) \, \d W_t
\]
with invariant measure $\pi$.
\bigskip
\bu {\red Discretization} $x^{n} \simeq x_{n\dt}$, {\blue invariant measure $\pi_\dt$}. For instance,
\[
x^{n+1} = x^n + \dt\,b(x^n)+\sqrt{\dt}\,\sigma(x^n)\,G^n, \qquad G^n \stackrel{\rm{i.i.d.}}{\sim} \mathcal N(0,{\rm Id})
\]
\medskip
\bu {\blue Ergodicity} of the numerical scheme with invariant measure~$\pi_\dt$
\[
\frac{1}{N_{\rm iter}} \sum_{n=1}^{N_{\rm iter}} A(x^n) \xrightarrow[N_{\rm iter}\to+\infty]{} \int_\cX A(x) \, \pi_\dt(\d x)
\]
\begin{block}{Error estimates for {\red finite} trajectory averages}
\[
\widehat{A}_{N_{\rm iter}} = \frac{1}{N_{\rm iter}} \sum_{n=1}^{N_{\rm iter}} A(x^n)
= \expect_\pi(A) + \underbrace{\frac{C}{N_{\rm iter} \dt}}_{\rm bias} + \underbrace{C\dt^\alpha}_{\rm bias} + \underbrace{\frac{\sigma_{A,\dt}}{\sqrt{N_{\rm iter}\dt}} \mathscr{G}}_\mathrm{statistical~error}
\]
\end{block}
\smallskip
\bu Bias $\expect_{\pi_\dt}(A)-\expect_\pi(A) \longrightarrow$ {\bf Focus today}
\medskip
\end{frame}
\begin{frame}\frametitle{Weak type expansions}
\bu Numerical scheme = {\red Markov chain} characterized by {\blue evolution operator}
\[
P_\dt \varphi(x) = \expect\Big( \varphi\left(x^{n+1}\right)\Big| x^n = x\Big)
\]
where $(x^n)$ is an approximation of $(x_{n \dt})$
\medskip
\bu Standard notions of error: {\red fixed integration time $T < +\infty$}
\begin{itemize}
\item {\blue Strong error}:
\[
\dps \sup_{0 \leq n \leq T/\dt} \expect | x^n - x_{n\dt} | \leq C \dt^p
\]
\item {\blue Weak error}: for any $\varphi$,
\[
\dps \!\!\!\! \sup_{0 \leq n \leq T/\dt} \Big| \expect\left[\varphi\left(x^n\right)\right] - \expect\left[\varphi\left(x_{n\dt}\right)\right] \Big| \leq C \dt^p
\]
%\item ``mean error'' \emph{vs.} ``error of the mean''
\end{itemize}
\begin{block}{$\dt$-expansion of the evolution operator}
\[
P_\dt \varphi = \varphi + \dt \, \mathcal A_1 \varphi + \dt^2 \mathcal A_2 \varphi + \dots + \dt^{p+1} \mathcal A_{p+1} \varphi + \dt^{p+2} r_{\varphi,\dt}
\]
\end{block}
\smallskip
{\red Weak order}~$p$ when $\mathcal A_k = \mathcal L^k/k!$ for $1 \leq k \leq p$.
\end{frame}
\begin{frame}
{Elements of proof}
\begin{itemize}
\item
Since $u(t, x) := \e^{t \mathcal L} \varphi(x)$ solves the backward Kolmogorov equation
\begin{align*}
\partial_t u = \mathcal L u,
\qquad u(0, x) = \varphi.
\end{align*}
we can write formally
\[
\e^{\dt \mathcal L} \varphi = \I + \dt \mathcal L \varphi + \frac{\dt^2}{2} \mathcal L^2\varphi + \dotsb
\]
\item
Introduce a telescopic sum
\begin{align*}
\expect \bigl[\varphi(x^N)\bigr] - \expect \bigl[\varphi(x_{N \dt})\bigr]
&= P_{\dt}^N \varphi (x_0) - \e^{N \dt \mathcal L} \varphi(x_0) \\
&= \sum_{n=0}^{N-1} \left( P_{\dt}^{N-n} \e^{n \dt \mathcal L} \varphi(x_0) - P_{\dt}^{N-(n+1)} \e^{(n+1) \dt \mathcal L} \varphi (x_0) \right) \\
&= \sum_{n=0}^{N-1} P_{\dt}^{N-(n+1)} \left( P_{\dt} - \e^{\dt \mathcal L} \right) \e^{n \dt \mathcal L} \varphi (x_0)
\end{align*}
\end{itemize}
\end{frame}
\begin{frame}
{Example: Euler-Maruyama, weak order~1}
Consider the scheme
\[
x^{n+1} = \Phi_\dt(x^n,G^n) = x^n + \dt\,b(x^n)+\sqrt{\dt}\,\sigma(x^n)\,G^n
\]
\bigskip
\bu Note that $P_\dt \varphi(x) = \expect_G\left[ \varphi\big(\Phi_\dt(x,G)\big) \right]$
\bigskip
\bu Technical tool: {\blue Taylor expansion}
\vspace{-0.2cm}
\[
\varphi(x + \delta) = \varphi(x) + \delta^\t \nabla \varphi(x) + \frac12 \delta^\t \nabla^2\varphi(x) \delta + \frac16 D^3\varphi(x):\delta^{\otimes 3} + \dots
\]
\medskip
\bu Replace $\delta$ with $\sqrt{\dt}\, \sigma(x)\,G + \dt\,b(x)$ and {\blue gather in powers of $\dt$}
\[
\begin{aligned}
\varphi\big(\Phi_\dt(x,G)\big) & = \varphi(x) + \sqrt{\dt}\, \sigma(x)\,G \cdot \nabla \varphi(x) \\
& \ \ \ + \dt \left(\frac{\sigma(x)^2}{2} G^\t \left[\nabla^2\varphi(x)\right]G + b(x)\cdot\nabla \varphi(x) \right) + \dots
\end{aligned}
\]
\medskip
\bu Taking {\blue expectations w.r.t. $G$} leads to
\[
P_\dt\varphi(x) = \varphi(x) + \dt \underbrace{\left(\frac{\sigma(x)^2}{2} \Delta \varphi(x) + b(x)\cdot\nabla \varphi(x) \right)}_{= \mathcal{L}\varphi(x)} + \mathcal O(\dt^2)
\]
\end{frame}
\begin{frame}
{Error estimates on the invariant measure (equilibrium)}
\bu {\red Assumptions} on the operators in the weak-type expansion
\begin{block}{Error estimates on $\pi_\dt$}
Suppose that
\begin{itemize}
\item
For all smooth $\varphi$, the following expansion holds
\[
P_\dt \varphi = \varphi + \dt \, \mathcal A_1 \varphi + \dt^2 \mathcal A_2 \varphi + \dots + \dt^{p+1} \mathcal A_{p+1} \varphi + \dt^{p+2} r_{\varphi,\dt}
\]
\item The probability measure $\pi$ is invariant by $\mathcal A_k$ for $1 \leq k \leq p$, namely
\[
\int_\cX \mathcal A_k \varphi \, d\pi = 0
\]
\end{itemize}
Then
\[
\int_\cX \varphi \, d\pi_\dt = \int_\cX \varphi \Big(1+\dt^{p}f_{p+1}\Big) d\pi + \dt^{p+1} R_{\varphi,\dt},
\]
where $f_{p+1} = -\left( \mathcal A_1^* \right)^{-1} g_{p+1}$.
\end{block}
Error on invariant measure can be {\blue (much) smaller} than the weak error
\end{frame}
\begin{frame}
{Motivation of the result}
We verify the error estimate for $\varphi \in \mathrm{Ran}(P_\dt-\I)$.
\medskip
\bu Idea: $\pi_\dt = \pi (1 + \dt^p f_{p+1} + \dots)$
\medskip
\bu by definition of $\pi_\dt$
\[
\int_\cX \left[ \left(\frac{P_\dt-\I}{\dt}\right) \psi \right] d\pi_\dt = 0
\]
\bu compare to first order correction to the invariant measure
\[
\begin{aligned}
& \int_\cX \left[ \left(\frac{P_\dt-\I}{\dt}\right)\psi\right] (1+\dt^{p}f_{p+1})\, d\pi \\
& \qquad = \dt^{p} \int_\cX \Big( \mathcal A_{p+1}\psi + (\mathcal A_1 \psi) f_{p+1} \Big) d\pi + \mathcal O\left(\dt^{p+1}\right) \\
& \qquad = \dt^p \int_\cX \Big( g_{p+1} + \mathcal A_1^* f_{p+1} \Big) \psi \, d\pi + \mathcal O\left(\dt^{p+1}\right)
\end{aligned}
\]
\begin{block}{}
Suggests $f_{p+1} = -\left( \mathcal A_1^* \right)^{-1} g_{p+1}$
\end{block}
\end{frame}
\begin{frame}
{Numerical estimators and associated challenges}
\begin{itemize}
\item
Estimator of linear response (observable~$R$ with equilibrium average~0)
\[
\widehat{A}_{\eta,t} = \frac{1}{\eta t}\int_0^t R(q_s^\eta,p_s^\eta) \, ds \xrightarrow[t\to+\infty]{\mathrm{a.s.}}
\alpha_\eta := \frac1\eta \int_{\mathcal E} R \, f_\eta \, d\mu = \alpha + \mathcal O(\eta)
\]
{\bf Issues with linear response methods:}
\begin{itemize}
\item Statistical error with {\red asymptotic variance $\mathcal O(\eta^{-2})$}
\item Bias $\mathcal O(\eta)$ due to $\eta \neq 0$
\item Bias from finite integration time
\end{itemize}
\end{itemize}
\end{frame}
\begin{frame}\frametitle{Analysis of variance / finite integration time bias}
\bu {\bf Statistical error} dictated by {\blue Central Limit Theorem}:
\[
\sqrt{t} \left(\widehat{A}_{\eta,t} - \alpha_\eta \right) \xrightarrow[t \to +\infty]{\mathrm{law}} \mathcal{N}\left(0,\frac{\sigma_{R,\eta}^2}{\eta^2}\right),
\qquad
\sigma_{R,\eta}^2 = \sigma_{R,0}^2 + \mathcal O(\eta)
\]
so $\dps \widehat{A}_{\eta,t} = \alpha_\eta + \mathcal O_{\rm P}\left(\frac{1}{\eta \sqrt{t}}\right)$ $\to$ requires {\red long simulation times} $t \sim \eta^{-2}$
\bigskip
\bu {\bf Finite time integration bias}: $\dps \left| \mathbb{E}\left(\widehat{A}_{\eta,t}\right) - \alpha_\eta \right| \leq \frac{K}{\eta t}$ \\
Bias due to $t < +\infty$ is $\dps \mathcal O\left(\frac{1}{\eta t}\right)$ $\to$ typically {\red smaller than statistical error}
%\bigskip
%\bu Bias~$\mathcal O(\eta)$ and statistical error equilibrated for~$t \sim \eta^{-3}$
\bigskip
\bu Key equality for the proofs: introduce $\dps -\left(\mathcal{L}+\eta\widetilde{\mathcal{L}}\right) \mathscr{R}_\eta = R - \int_\mathcal{E} R f_\eta \, d\mu$
\[
\widehat{A}_{\eta,t} - \frac1\eta \!\int_{\mathcal{E}} \!R f_\eta \, d\mu = \frac{\mathscr{R}_\eta(q_0^\eta,p_0^\eta) - \mathscr{R}_\eta(q_t^\eta,p_t^\eta)}{\eta t} + \frac{\sqrt{2\gamma}}{\eta t\sqrt{\beta}} \int_0^t \!\!\nabla_p \mathscr{R}_\eta(q_s^\eta,p_s^\eta)^T dW_s
\]
\end{frame}
\begin{frame}\frametitle{Examples of splitting schemes for Langevin dynamics (1)}
\bu Example: Langevin dynamics, discretized using a {\blue splitting} strategy
\[
A = M^{-1} p \cdot \nabla_q,
\quad
B_\eta = \Big(-\nabla V(q) + \eta\,F\Big)\cdot \nabla_p,
\quad
C = -M^{-1} p \cdot \nabla_p + \frac1\beta \Delta_p
\]
\bu Note that $\mathcal L_\eta = A + B_\eta + \gamma C$
\medskip
\bu Trotter splitting $\to$ weak order 1
\[
P^{ZYX}_\dt = \e^{\dt Z} \e^{\dt Y} \e^{\dt X} = \e^{\dt \mathcal L} + \mathcal O(\dt^2)
\]
\bu Strang splitting $\to$ {\blue weak order 2}
\[
P^{ZYXYZ}_\dt = \e^{\dt Z/2} \e^{\dt Y/2} \e^{\dt X} \e^{\dt Y/2} \e^{\dt Z/2} = \e^{\dt \mathcal L} + \mathcal O(\dt^3)
\]
\bu Other category: {\red Geometric Langevin}\footnote{N.~Bou-Rabee and H.~Owhadi, {\em SIAM J. Numer. Anal.} (2010)} algorithms, \textit{e.g.} $P_\dt^{\gamma C,A,B_\eta,A}$ \\
$\to$ weak order 1 but measure preserved at order 2 in $\dt$
\end{frame}
\begin{frame}\frametitle{Examples of splitting schemes for Langevin dynamics (2)}
\small
\bu $P_\dt^{B_\eta,A,\gamma C}$ corresponds to
%\begin{equation}
%\label{eq:Langevin_splitting}
$\dps \left\{ \begin{aligned}
\widetilde{p}^{n+1} & = p^n + \Big(-\nabla V(q^{n}) + \eta F\Big)\dt, \\
q^{n+1} & = q^n + \dt \, M^{-1} \widetilde{p}^{n+1}, \\
p^{n+1} & = \alpha_\dt \widetilde{p}^{n+1} + \sqrt{\frac{1-\alpha^2_\dt}{\beta}M} \, G^n
\end{aligned} \right.$ \\[5pt]
%\end{equation}
where $G^n$ are i.i.d. Gaussian and $\alpha_\dt = \exp(-\gamma M^{-1} \dt)$
\bigskip
\bu $P^{\gamma C,B_\eta,A,B_\eta,\gamma C}_\dt$ for
%\[
$\dps \left\{ \begin{aligned}
\widetilde{p}^{n+1/2} & = \alpha_{\dt/2} p^{n} + \sqrt{\frac{1-\alpha_{\dt}}{\beta}M} \, G^{n}, \\
p^{n+1/2} & = \widetilde{p}^{n+1/2} + \frac{\dt}{2} \Big( -\nabla V(q^{n})+\eta F\Big), \\
q^{n+1} & = q^n + \dt \, M^{-1} p^{n+1/2}, \\
\widetilde{p}^{n+1} & = p^{n+1/2} + \frac{\dt}{2} \Big(- \nabla V(q^{n+1}) +\eta F\Big), \\
p^{n+1} & = \alpha_{\dt/2} \widetilde{p}^{n+1} + \sqrt{\frac{1-\alpha_{\dt}}{\beta}M} \, G^{n+1/2}
\end{aligned} \right.$
%\]
\end{frame}
\begin{frame}\frametitle{Error estimates on linear response}
\begin{block}{Error estimates for nonequilibrium dynamics}
There exists a function $f_{\alpha,1,\gamma} \in H^1(\mu)$ such that
\vspace{-0.3cm}
\[
\int_{\mathcal E} \psi \, d{\mu}_{\gamma,\eta,\dt} = \int_{\mathcal E} \psi \Big(1+ \eta f_{0,1,\gamma} + \dt^\alpha f_{\alpha,0,\gamma} + \eta \dt^\alpha f_{\alpha,1,\gamma} \Big) d{\mu} + r_{\psi,\gamma,\eta,\dt},
\]
where the remainder is compatible with linear response
\vspace{-0.1cm}
\[
\left|r_{\psi,\gamma,\eta,\dt}\right| \leq K(\eta^2 + \dt^{\alpha+1}),
\qquad
\left|r_{\psi,\gamma,\eta,\dt} - r_{\psi,\gamma,0,\dt}\right| \leq K \eta (\eta + \dt^{\alpha+1})
\]
\end{block}
\medskip
\bu Corollary: error estimates on the {\blue numerically computed mobility}
\[
\begin{aligned}
\rho_{F,\dt} & = \lim_{\eta \to 0} \frac{1}{\eta} \left(\int_{\mathcal E} F^\t M^{-1} p \, \mu_{\gamma,\eta,\dt}(d{q}\,d{p}) - \int_{\mathcal E} F^\t M^{-1} p \, \mu_{\gamma,0,\dt}(d{q}\,d{p}) \right) \\
& = \rho_{F} + \dt^\alpha \int_{\mathcal E} F^\t M^{-1} p \, f_{\alpha,1,\gamma} \, d{\mu} + \dt^{\alpha+1} r_{\gamma,\dt}
\end{aligned}
\]
\bu Results in the {\red overdamped} limit\footnote{B.~Leimkuhler, C.~Matthews and G.~Stoltz, {\em IMA J. Numer. Anal.} (2015)}
\bigskip
\end{frame}
\begin{frame}\frametitle{Numerical results}
\begin{figure}
\begin{center}
\includegraphics[width=.8\textwidth]{figures/mobility_Langevin.eps}
\end{center}
\end{figure}
Scaling of the mobility for the first order scheme $P_\dt^{A,B_\eta,\gamma C}$ and the second order scheme $P_\dt^{\gamma C, B_\eta,A,B_\eta, \gamma C}$.
\end{frame}
%-----------------------------------------------------------
\begin{frame}\frametitle{Error estimates on Green-Kubo formulas (1)}
\bu For methods of {\bf weak order}~1, {\red Riemman sum} ($\phi,\varphi$ average 0 w.r.t. $\pi$)
\vspace{-0.2cm}
\[
\begin{aligned}
&
\int_0^{+\infty} \expect \Big( \phi(x_t) \varphi(x_0) \Big) d{t} = \dt \sum_{n=0}^{+\infty} \expect_\dt \left(\Pi_\dt \phi\left(x^{n}\right)\varphi\left(x^0\right)\right) + \mathrm{O}(\dt) \\[-7pt]
& \mathrm{where} \ \Pi_\dt \phi = \phi - \int_\cX \phi \, d\pi_\dt
\end{aligned}
\]
\bu Correlation approximated in practice using $K$ independent realizations
%\bi
%\item truncating the integration (decay estimates)
%\item using empirical averages ($K$ independent realizations)
\vspace{-0.2cm}
\[
\begin{aligned}
& \expect_\dt \left(\Pi_\dt \phi\left(x^{n}\right)\varphi\left(x^0\right)\right)
\simeq
\frac{1}{K}\sum_{m=1}^{K} \left( \phi(x^{n,k}) - \overline{\phi}^{n,K} \right)\left( \varphi(x^{n,k}) - \overline{\varphi}^{n,K} \right) \\[-10pt]
& \mathrm{where} \ \overline{\phi}^{n,K} = \frac1K \sum_{m=1}^{K} \phi(x^{n,k})
\end{aligned}
\]
\bu For methods of {\bf weak order} 2, {\blue trapezoidal rule}
\vspace{-0.1cm}
\[
\begin{aligned}
\int_0^{+\infty} \expect \Big( \phi(x_t) \varphi(x_0) \Big) d{t} & = \frac{\dt}{2} \expect_\dt \left(\Pi_\dt \phi\left(x^{0}\right)\varphi\left(x^0\right)\right) \\
& \ \ + \dt \sum_{n=1}^{+\infty} \expect_\dt \left(\Pi_\dt \phi\left(x^{n}\right)\varphi\left(x^0\right)\right) + \mathrm{O}(\dt^2)
\end{aligned}
\]
%\bu Allows to quantify the variance $\dps \frac{\sigma^2_{A,\dt}}{N_{\rm iter}\dt} \simeq \frac{\dps 2 \int_0^{+\infty} \expect\left[\delta A(x_t)\delta A(x_0)\right] \, dt}{T}$ where $T = N_{\rm iter}\dt$
\end{frame}
%-----------------------------------------------------------
\begin{frame}\frametitle{Error estimates on Green-Kubo formulas (2)}
\bu Error of {\red order~$\alpha$ on invariant measure}: $\dps \int_\cX \psi \, d{\pi}_\dt = \int_\cX \psi \, d{\pi} + \mathrm{O}(\dt^\alpha)$
\medskip
\bu Expansion of the evolution operator ($p+1 \geq \alpha$ and $\mathcal A_1 = \mathcal L$)
\[
P_\dt \varphi = \varphi + \dt \, \mathcal L \varphi + \dt^2 \mathcal A_2 \varphi + \dots + \dt^{p+1} \mathcal A_{p+1} \varphi + \dt^{p+2} r_{\varphi,\dt}
\]
\begin{block}{Ergodicity of the numerical scheme}
\centerequation{
\forall n \in \mathbb{N}, \qquad \left\| P_\dt^n \right \|_{\mathcal{B}(L^\infty_{\Li_s,\dt})} \leq C_s \e^{-\lambda_s n\dt}
}
where $\mathcal{K}_s$ is a Lyapunov function ($1+|p|^{2s}$ for Langevin) and
\[
L^\infty_{\Li_s,\dt} = \left\{ \frac{\varphi}{\mathcal{K}_s} \in L^\infty(\cX), \ \int_\cX \varphi \, d\pi_\dt = 0\right\}
\]
\end{block}
\bu Proof: Lyapunov condition + uniform-in-$\dt$ minorization condition\footnote{M. Hairer and J. Mattingly, \emph{Progr. Probab.} (2011)}
\end{frame}
%-----------------------------------------------------------
\begin{frame}\frametitle{Error estimates on Green-Kubo formulas (3)}
\begin{block}{Error estimates on integrated correlation functions}
Observables $\varphi,\psi$ with average~0 w.r.t. invariant measure~$\pi$
\[
\int_0^{+\infty} \expect \Big( \psi(x_t) \varphi(x_0) \Big) d{t} = \dt \sum_{n=0}^{+\infty} \expect_\dt \left(\widetilde{\psi}_{\dt,\alpha}\left(x^{n}\right)\varphi\left(x^0\right)\right) + \dt^\alpha r^{\psi,\varphi}_\dt,
\]
where $\expect_\dt$ denotes expectations w.r.t. initial conditions $x_0 \sim \pi_\dt$ and over all realizations of the Markov chain $(x^n)$, and
\[
\widetilde{\psi}_{\dt,\alpha} = \psi_{\dt,\alpha} - \int_\cX \psi_{\dt,\alpha} \, d\pi_\dt\]
with $\dps \psi_{\dt,\alpha} = \Big(\I + \dt \,\mathcal A_2 \mathcal L^{-1} + \dots + \dt^{\alpha-1} \mathcal A_{\alpha}\mathcal L^{-1} \Big)\psi$
\end{block}
\bu Useful when $\mathcal A_k \mathcal L^{-1}$ can be computed, \emph{e.g.} $\mathcal A_k = a_k \mathcal L^{k}$
\medskip
\bu Reduces to trapezoidal rule for second order schemes
\end{frame}
%-----------------------------------------------------------
\begin{frame}\frametitle{Sketch of proof (1)}
\bu Define $\dps \Pi_\dt \varphi = \varphi - \int_\cX \varphi \, d\pi_\dt$
\smallskip
\bu Since $\mathcal L^{-1}\psi$ has average~0 w.r.t.~$\pi$, introduce $\pi_\dt$ as
\begin{align*}
\int_\cX \left(-\mathcal L^{-1} \psi\right) \varphi \, d{\pi} & = \int_\cX \left(-\mathcal L^{-1} \psi\right) \Pi_\dt \varphi \, d{\pi} \nonumber \\
%& = \int_\cX \left(-\mathcal L^{-1} \psi\right) \Pi_\dt \varphi \, d{\pi}_\dt + \dt^\alpha r^{\psi,\varphi}_\dt, \nonumber \\
& = \int_\cX \Pi_\dt \left(-\mathcal L^{-1} \psi\right) \Pi_\dt \varphi \, d{\pi}_\dt + \dt^\alpha r^{\psi,\varphi}_\dt,
\end{align*}
\bu Rewrite $-\Pi_\dt \mathcal L^{-1}$ in terms of $P_\dt$ as
\[
\begin{aligned}
& -\Pi_\dt \mathcal L^{-1} \psi = -\Pi_\dt \left(\dt\sum_{n=0}^{+\infty} P_\dt^n \right) \Pi_\dt \left(\frac{\I - P_\dt}{\dt}\right) \mathcal L^{-1} \psi \\
& \ \ = \dt \left(\sum_{n=0}^{+\infty} \left[ \Pi_\dt P_\dt \Pi_\dt\right]^n \right) \left(\mathcal L + \dots + \dt^{\alpha-1} S_{\alpha-1} + \dt^\alpha \widetilde{R}_{\alpha,\dt}\right) \mathcal L^{-1} \psi, \\
& \ \ = \dt \sum_{n=0}^{+\infty} \left[ \Pi_\dt P_\dt \Pi_\dt\right]^n \widetilde{\psi}_{\dt,\alpha} + \dt^\alpha \left(\frac{\I - P_\dt}{\dt}\right)^{-1} \Pi_\dt \widetilde{R}_{\alpha,\dt} \mathcal L^{-1} \psi.
\end{aligned}
\]
\end{frame}
%-----------------------------------------------------------
\begin{frame}\frametitle{Sketch of proof (2)}
\bu Uniform resolvent bounds $\dps \left\| \left(\frac{\I - P_\dt}{\dt}\right)^{-1} \right \|_{\mathcal{B}(L^\infty_{\Li_s,\dt})} \leq \frac{C_s}{\lambda_s}$
\medskip
\bu Coming back to the initial equality,
\[
\int_\cX \left(-\mathcal L^{-1} \psi\right) \varphi \, d{\pi} = \dt \int_\cX \sum_{n=0}^{+\infty} \left( \Pi_\dt P_\dt^n \widetilde{\psi}_{\dt,\alpha} \right) \left( \Pi_\dt \varphi \right) d{\pi}_\dt + \mathrm{O}\left(\dt^\alpha\right)
\]
\bu Rewrite finally
\[
\begin{aligned}
\int_\cX \sum_{n=0}^{+\infty} \left( \Pi_\dt P_\dt^n \widetilde{\psi}_{\dt,\alpha} \right)\left( \Pi_\dt \varphi \right) d{\pi}_\dt & = \int_\cX \sum_{n=0}^{+\infty} \left(P_\dt^n \widetilde{\psi}_{\dt,\alpha} \right) \varphi \, d{\pi}_\dt \\
& = \sum_{n=0}^{+\infty} \expect_\dt \left(\widetilde{\psi}_{\dt,\alpha}\left(q^{n},p^{n}\right)\varphi\left(q^0,p^0\right)\right)
\end{aligned}
\]
\end{frame}
\begin{frame}
\begin{center}
\Huge{Conclusion and perspectives}
\end{center}
\end{frame}
\begin{frame}
{Main points: recall the outline!}
\bu {\bf Definition and examples of nonequilibrium systems}
\bigskip
\bu {\bf Computation of transport coefficients}
\begin{itemize}
\item a survey of computational techniques
\item linear response theory
\item relationship with Green-Kubo formulas
\end{itemize}
\bigskip
\bu {\bf Elements of numerical analysis}
\begin{itemize}
\item estimation of biases due to timestep discretization
\item {\blue (largely) open issue: variance reduction}
\item {\red (not discussed) use of non-reversible dynamics to enhance sampling}
\end{itemize}
\end{frame}
\end{document}
% vim: ts=4 sw=4
|