summaryrefslogtreecommitdiff
path: root/main.tex
blob: 35354b98b6e2ef9efea1caeb3978d768c5d40fcb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
\documentclass[9pt]{beamer}
\renewcommand{\emph}[1]{\textcolor{blue}{#1}}
\newif\iflong
\longfalse
\setbeamerfont{footnote}{size=\scriptsize}

\input{header}
\input{macros}

\newcommand{\highlight}[2]{%
  \colorbox{#1!20}{$\displaystyle#2$}}

\newcommand{\hiat}[4]{%
  \only<#1>{\highlight{#3}{#4}}%
  \only<#2>{\highlight{white}{#4}}%
}

\graphicspath{{figures/}}
\AtEveryCitekey{\clearfield{pages}}
\AtEveryCitekey{\clearfield{eprint}}
\AtEveryCitekey{\clearfield{volume}}
\AtEveryCitekey{\clearfield{number}}
\AtEveryCitekey{\clearfield{month}}
\addbibresource{main.bib}

\title{Mobility estimation for Langevin dynamics using control variates\\[.3cm]
  \small \textcolor{yellow}{AMMP Seminar}
}

\author{%
    Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{}
}

\institute{%
    MATHERIALS -- Inria Paris
    \textcolor{blue}{\&} CERMICS --
    École des Ponts ParisTech
}

\date{October 2022}
\begin{document}


\begin{frame}[plain]
  \begin{figure}[ht]
    \centering
    % \includegraphics[height=1.5cm]{figures/logo_matherials.png}
    % \hspace{.5cm}
    \includegraphics[height=1.2cm]{figures/logo_inria.png}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_ponts.png}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_ERC.jpg}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_EMC2.png}
  \end{figure}
  \titlepage
\end{frame}

\begin{frame}
  {Outline}
  \tableofcontents
\end{frame}

% \section{Some background material on fast/slow systems of SDEs}%
% \label{sec:numerical_solution_of_multiscale_sdes}


% \begin{frame}
%   {Homogenization result}
%   \begin{itemize}
%     \item Effective drift:
%     \[
%       \vect F(x) = \int_{\torus^n} \left(\vect f \, \cdot \, \grad_x \right) \vect \Phi(x,y) \, \rho^{\infty}(y;x) \, \d y.
%     \]
%     \item Effective diffusion:
%       \begin{align*}
%         & \mat A(x) \, \mat A(x)^T = \frac12 \left(\mat A_0(x) + \mat A_0(x)^T\right), \\
%         & \text{with } \mat A_0(x) :=  2 \int_{\real^n} \vect f(x,y) \, \otimes \, \vect \Phi(x,y) \, \rho^{\infty}(y;x) \, \d y.
%       \end{align*}
%   \end{itemize}
%   \begin{example}
%     Multiscale system:
%     \begin{alignat*}{2}
%       & \d X^{\varepsilon}_t = \frac{1}{\varepsilon} X^{\varepsilon}_t \, Y^{\varepsilon}_t \, \d t, \quad & X^{\varepsilon}_0 = 1, \\
%       & \d Y^{\varepsilon}_t = - \frac{1}{\varepsilon^2} \, Y_t^{\varepsilon} \, \d t
%         + \frac{\sqrt 2}{\varepsilon}  \,\d W_{y}(t), \quad & Y^{\varepsilon}_0 = 0.
%     \end{alignat*}
%     Effective equation:
%     \[
%       \d X_t = X_t \, \d t + \, \sqrt{2} \, X_t \, \d W_{y} (t).
%     \]
%   \end{example}
% \end{frame}

% \begin{frame}
%   {Example: Stratonovich correction}
%   \begin{figure}[ht]
%   \centering
%   \href{run:videos/spectral/slow.avi?autostart&loop}%
%   {\includegraphics[width=0.8\textwidth]{videos/spectral/slow.png}}%

%   \href{run:videos/spectral/fast.avi?autostart&loop}%
%   {\includegraphics[width=0.8\textwidth]{videos/spectral/fast.png}}%
%   \caption{%
%     Convergence to the solution of the effective equation as $\varepsilon \to 0$.
%   }
%   \end{figure}
% \end{frame}

\section{Mobility estimation for Langevin dynamics using control variates}
\begin{frame}
    % {Part I:  Mobility estimation for Langevin dynamics using control variates}
    \begin{center}
      \Large
      \color{blue}
      Part I: Mobility estimation for Langevin dynamics
    \end{center}
    \begin{figure}
        \centering
        \begin{minipage}[t]{.2\linewidth}
            \centering
            \raisebox{\dimexpr-\height+\ht\strutbox}{%
              \includegraphics[height=\linewidth]{figures/collaborators/greg.jpg}
            }
        \end{minipage}\hspace{.01\linewidth}%
        \begin{minipage}[t]{.24\linewidth}
            Grigorios Pavliotis
            \vspace{0.2cm}

            \includegraphics[height=1cm,width=\linewidth,keepaspectratio]{figures/collaborators/imperial.pdf}
            \flushleft \scriptsize
            Department of Mathematics
        \end{minipage}\hspace{.1\linewidth}%%
        \begin{minipage}[t]{.2\linewidth}
            \centering
            \raisebox{\dimexpr-\height+\ht\strutbox}{%
              \includegraphics[height=\linewidth]{figures/collaborators/gabriel.jpg}
            }
        \end{minipage}\hspace{.01\linewidth}%
        \begin{minipage}[t]{.24\linewidth}
          Gabriel Stoltz
          \vspace{0.2cm}

          \includegraphics[height=1.2cm,width=\linewidth,keepaspectratio]{figures/collaborators/enpc.png}
          \flushleft \scriptsize
          CERMICS
        \end{minipage}
    \end{figure}

    \vspace{.7cm}
    \textbf{Reference:}
     \fullcite{2022arXiv220609781P}
\end{frame}


% \begin{frame}[plain]
%   \frametitle{Outline}
%   \tableofcontents[subsectionstyle=show]
% \end{frame}

\subsection{Background and problem statement}%

\AtBeginSubsection[]
{
  \begin{frame}<beamer>
    % \frametitle{Outline for section \thesection}
    \frametitle{Outline}
    % \tableofcontents[currentsubsection,sectionstyle=show/shaded,subsectionstyle=show/shaded/hide]
    \tableofcontents[currentsubsection]
  \end{frame}
}

\begin{frame}
  {Goals of molecular dynamics}

  {\large $\bullet$} Computation of \emph{macroscopic properties} from Newtonians atomistic models:
  \vspace{-.1cm}
  \begin{minipage}{.51\textwidth}
    \vspace{-.7cm}
    \begin{itemize}
      \item Static properties, such as
        \begin{itemize}
          \item the heat capacity and
          \item the equations of state $P = P(\rho, T)$.
        \end{itemize}

        \vspace{.2cm}
      \item Dynamical properties, such as \emph{transport coefficients}:
        % mobilité,
        % viscosité de cisaillement;
        % conductivité thermique.
        \begin{itemize}
          \item the viscosity;
          \item the thermal conductivity;
          \item the \emph{mobility} of ions in solution.
        \end{itemize}
    \end{itemize}
  \end{minipage}
  \hspace{.5cm}
  \begin{minipage}{.4\textwidth}
    \begin{figure}[ht]
      \centering
      \includegraphics[width=.8\linewidth, angle=270]{figures/loi_argon-crop.pdf}
      \caption*{\hspace{1.2cm}%
        Equation of state of argon at 300K.

        \tiny\hspace{1.2cm}$\bullet$ `+': molecular simulation;

        \hspace{1.2cm}$\bullet$ Solid line: experimental measurements\footnotemark.
      }
    \end{figure}
  \end{minipage}
  \footnotetext{\url{https://webbook.nist.gov/chemistry/fluid/}}

  \vspace{.2cm}
  {\large $\bullet$} \emph{Numerical microscope}:
  used in physics, biology, chemistry.
\end{frame}

\begin{frame}
  {Some background material on the Langevin equation}
  Consider the (one-particle) Langevin equation
  \[
    \left\{
    \begin{aligned}
      & \d \vect q_t = \textcolor{blue}{\vect p_t \, \d t}, \\
      & \d \vect p_t = \textcolor{blue}{- \grad V(\vect q_t) \, \d t} \, \textcolor{red}{- {\color{black}\gamma} \vect p_t \, \d t + \sqrt{2 {\color{black}\gamma} \beta^{-1}} \, \d \vect W_t},
    \end{aligned}
    \right.
    \qquad (\vect q_0, \vect p_0) \sim \mu,
  \]
  where $\gamma$ is the friction, $V$ is a \emph{periodic} potential, and $\beta = \frac{1}{k_{\rm B} T}$.
  \begin{itemize}
    % \item The dynamics is composed of a \textcolor{blue}{Hamiltonian} part and a \textcolor{red}{fluctuation/dissipation} part;
    \item The invariant probability measure is
      \[
        \mu(\vect q, \vect p) = \frac{1}{Z} \e^{-\beta H(\vect q, \vect p)} = \frac{1}{Z} \e^{-\beta \left(V(\vect q) + \frac{\abs{\vect p}^2}{2}\right)}, \quad \text{on}~ \emph{\torus^d} \times \real^d.
      \]
    \item The generator of the associated Markov semigroup
      \[
        \left (\e^{\mathcal L t} \varphi\right) (\vect q, \vect p) = \expect \bigl(\varphi(\vect q_t, \vect p_t) \big| (\vect q_0, \vect p_0) = (\vect q, \vect p) \bigr)
      \]
      is the following operator:
      \begin{align*}
        \mathcal L &= \textcolor{blue}{\left(\vect p \cdot \grad_{\vect q} - \grad V(q) \cdot \grad_{\vect p} \right)}
        + \gamma \, \textcolor{red}{\left( - \vect p \grad_{\vect p} + \beta^{-1} \laplacian_{\vect p} \right)}
        =: \textcolor{blue}{\mathcal L_{\textrm{ham}}} + \gamma \, \textcolor{red}{\mathcal L_{\textrm{FD}}}.
      \end{align*}
  \end{itemize}
  We denote by $\norm{\cdot}$ and $\ip{\cdot}{\cdot}$ the norm and inner product of~$L^2(\mu)$, and
  \[
    L^2_0(\mu) = \Bigl\{\varphi \in L^2(\mu) : \ip{\varphi}{1} = \expect_{\mu} \varphi =  0 \Bigr\}.
  \]
\end{frame}


% \begin{frame}
%   {Common models in molecular simulation}
%   We consider the following hierarchy of models:
%   \begin{align}
%     \label{eq:gle:model:overdamped} \tag{OL}
%     \dot {\vect q} &= - \grad V(\vect q) + \sqrt{2 \, \beta^{-1}} \, \dot {\vect W}, \\
%     \label{eq:gle:model:langevin} \tag{L}
%     \ddot {\vect q} &= - \grad V(\vect q) - \gamma \, \dot {\vect q} + \sqrt{2 \gamma \, \beta^{-1}} \, \dot {\vect W}, \\
%     \label{eq:gle:model:generalized} \tag{GLE}
%     \ddot {\vect q} &= -\grad V(\vect q) - \int_{0}^{t} \widehat \gamma(t-s) \, \dot {\vect q}(s) \, \d s + \vect F(t).
%   \end{align}
%   where
%   \begin{itemize}
%     \item $V$ is a potential, in this talk \emph{periodic};
%     \item $\gamma$ is the friction coefficient;
%     \item $\widehat \gamma(\cdot)$ is the memory kernel;
%     \item $\vect F$ is a stationary non-Markovian noise process.
%   \end{itemize}
%   \vspace{.2cm}

%   The kernel $\widehat \gamma(\cdot)$ and the noise $F$ are related by the \emph{fluctuation/dissipation} relation:
%   \[
%       \expect\bigl[\vect F(t) \otimes \vect F(s)\bigr] = \beta^{-1} \, \widehat \gamma(t-s) \mat I_d.
%   \]
% \end{frame}

% \subsection{Mobility and effective diffusion}
\begin{frame}
  {Definition of the mobility}
  Consider Langevin dynamics with additional forcing in a direction $\vect e$:
  % \[
  %   \ddot {\vect q} = - \grad V(\vect q) + \alert{\eta \vect e} - \gamma \, \dot {\vect q} + \sqrt{2 \, \gamma} \, \beta^{-1} \, \dot {\vect W}.
  % \]
  % This equation may be rewritten as a system for the position and momentum:
  \[
    \left\{
    \begin{aligned}
      & \d \vect q_t = \vect p_t \, \d t, \\
      & \d \vect p_t = - \grad V(\vect q_t) \, \d t + \alert{\eta \vect e} \, \d t - \gamma \vect p_t \, \d t + \sqrt{2 \gamma \beta^{-1}} \, \d \vect W_t.
    \end{aligned}
    \right.
  \]
  This dynamics admits a unique invariant probability distribution $\mu_{\alert{\eta}} \in \mathcal P(\emph{\torus^d} \times \real^d)$.

  \begin{definition}
    [Mobility]
    The mobility in direction $\vect e$ is defined mathematically as
    \[
      M_{\vect e} =
      \lim_{\alert{\eta} \to 0} \frac{1}{\alert{\eta}}\expect_{\mu_{\alert{\eta}}} [\vect e^\t \vect p]
    \]
    $\approx $ factor relating the mean momentum to the strength of the inducing force.
  \end{definition}

  \begin{itemize}
    \item There is a symmetric mobility tensor $\mat M$ such that $M_{\vect e} = \vect e^\t \mat M \vect e$.

    \item
      \textbf{Einstein's relation:}
      \(
      \mat D = \beta^{-1} \mat M,
      \) with $\mat D$ the \emph{effective diffusion coefficient}.
  \end{itemize}
\end{frame}

\begin{frame}
  {Effective diffusion}
  It is possible to show a \emph{functional central limit theorem} for the Langevin dynamics\footfullcite{MR663900}:
  \begin{equation*}
    \varepsilon  \vect q_{s/\varepsilon^2} \xrightarrow[\varepsilon \to 0]{} \sqrt{2 \mat D} \, \vect W_s
    \qquad  \text{weakly on } C([0, \infty)).
  \end{equation*}
  In particular, $\vect q_t/\sqrt{t} \xrightarrow[t \to \infty]{} \mathcal N(0, 2 \mat D)$ weakly.

  \vspace{-.25cm}
  \begin{figure}[ht]
  \centering
  \href{run:videos/gle/effective-diffusion.webm?autostart&loop}%
  {\includegraphics[width=0.75\textwidth]{videos/gle/effective-diffusion.png}}%
  \caption{Histogram of $q_t/\sqrt{t}$. The potential $V(q) = - \cos(q) / 2$ is illustrated in the background.}
  \end{figure}
\end{frame}

\begin{frame}
  {Mathematical expression for the effective diffusion (dimension 1)}
  \vspace{.2cm}
  \begin{block}{Expression of $D$ in terms of the solution to a Poisson equation}
  The effective diffusion coefficient is given by where $D = \emph{ \ip{\phi}{p}}$ and $\phi$ is the solution to
  \[
    \emph{- \mathcal L \phi = p},
    \qquad \phi \in L^2_0(\mu) := \bigl\{ u \in L^2(\mu): \ip{u}{1} = 0 \bigr\}.
  \]
  \end{block}
  \textbf{Key idea of the proof:} Apply It\^o's formula to $\phi$
  \begin{align*}
    \d \phi(q_s, p_s)
    % &= \frac{1}{\varepsilon^2} \mathcal L_{L} \phi (q_t, p_t)  + \frac{1}{\varepsilon} \, \sqrt{2 \gamma \beta^{-1}} \, \derivative{1}[\phi]{p}(q_t, p_t) \, \d W_t, \\
    &= - p_s \, \d s + \sqrt{2 \gamma \beta^{-1}} \, \derivative{1}[\phi]{p}(q_s, p_s) \, \d W_s
  \end{align*}
  and then rearrange:
  \begin{align*}
    \alert\varepsilon (q_{t/\alert\varepsilon^2} - q_{0}) &= \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} p_s \, \d s \\
                                                            &= \underbrace{\alert\varepsilon \bigl(\phi(q_0, p_0) - \phi(q_{t/\alert\varepsilon^2}, p_{t/\alert\varepsilon^2})\bigr)}_{\to 0
                                                            % ~\text{in $L^p(\Omega, C([0, T], \real))$}
                                                          }
    + \underbrace{\sqrt{2 \gamma \beta^{-1}} \alert\varepsilon \int_{0}^{t/\alert\varepsilon^2} \derivative{1}[\phi]{p}(q_s, p_s) \, \d W_s}_{\to \sqrt{2 D} W_t~\text{weakly by MCLT}}.
  \end{align*}
  % where
  % \begin{align*}
  %   D &= \gamma \beta^{-1} \, \int \abs{\textstyle \derivative{1}[\phi]{p}(q, p)}^2 \, \mu(\d q \, \d p)
  %   = - \int \phi (\mathcal L \phi) \, \d \mu
  %   = \ip{\phi}{p}.
  % \end{align*}

  \vspace{.3cm}
  \textbf{In the multidimensional setting}, $D_{\vect e} = \ip{\phi_{\vect e}}{\vect e^\t \vect p}$ with $- \mathcal L \phi_{\vect e} = \vect e^\t \vect p$
\end{frame}

\begin{frame}
  {Open question: surface diffusion when $\gamma \ll 1$\footnote{Source of the video: \url{https://en.wikipedia.org/wiki/Surface_diffusion}}}
    \begin{figure}[ht]
        \centering
        \href{run:videos/surface_diffusion.webm?autostart&loop}%
        {\includegraphics[width=0.4\linewidth]{videos/surface_diffusion.png}}
        \hspace{1cm}
        % \href{run:videos/diffusion.webm?autostart&loop}%
        % {\includegraphics[width=0.4\linewidth]{figures/mean_square.pdf}}
    \end{figure}

    \vspace{-.3cm}
    Applications:
    \begin{itemize}
      \item integrated circuits;
      \item catalysis.
    \end{itemize}

    \textbf{Open question}: behavior of the effective diffusion coefficient when $\gamma \ll 1$?
    \[
      D = \lim_{t \to \infty} \frac{\langle \abs{\vect q(t)}^2 \rangle}{4 t} \sim \gamma^{-\alert{\sigma}}, \qquad \alert{\sigma} =\, ???
    \]
    % \vspace{-.3cm}

    % \textbf{Difficulty}: slow convergence of Monte Carlo methods when $\gamma$ is small.
    % \vspace{.3cm}
\end{frame}


% \subsection{Some background material on the Langevin equation}


\begin{frame}{Langevin dynamics: \textcolor{yellow}{underdamped} and \textcolor{yellow}{overdamped} regimes\footfullcite{MR2394704}}
  \begin{figure}[ht]
    \centering
    \href{run:videos/particles_underdamped.webm?autostart&loop}%
    {\includegraphics[width=0.49\textwidth]{videos/particles_underdamped.png}}%
    \href{run:videos/particles_overdamped.webm?autostart&loop}%
    {\includegraphics[width=0.49\textwidth]{videos/particles_overdamped.png}}%
    \caption{Langevin dynamics with friction $\gamma = 0.1$ (left) and $\gamma = 10$ (right)}
  \end{figure}

  \vspace{-.3cm}
  \begin{itemize}
    \item The \alert{underdamped} limit as $\gamma \to 0$ is well understood in dimension 1 but not in the \alert{multi-dimensional setting}.
    \item \emph{Overdamped} limit:
      as $\gamma \to \infty$, the rescaled process $t \mapsto q_{\gamma t}$ converges weakly to the solution of the \emph{overdamped Langevin equation}:
      \[
        \dot {\vect q} = - \grad V(q) + \sqrt{2 \, \beta^{-1}} \, \dot {\vect W}.
      \]
  \end{itemize}
\end{frame}

\begin{frame}
  {The \textcolor{yellow}{underdamped} limit in \textcolor{yellow}{dimension 1}}
  As \emph{$\gamma \to 0$},
  the Hamiltonian of the rescaled process
  \begin{equation*}
    \left\{
    \begin{aligned}
    q_{\gamma}(t) = q(t/\gamma), \\
    p_{\gamma}(t) = p(t/\gamma),
    \end{aligned}
    \right.
  \end{equation*}
  converges weakly to a diffusion process on a graph.
  \vspace{-.6cm}

  \begin{figure}[ht!]
      % \centering
      % #1f77b4', u'#ff7f0e', u'#2ca02c
      \definecolor{c1}{RGB}{31,119,180}
      \definecolor{c2}{RGB}{255,127,14}
      \definecolor{c3}{RGB}{44,160,44}
      \begin{tikzpicture}%
      \node[anchor=south west,inner sep=0] at (0,0) {%
          \includegraphics[width=.7\textwidth]{figures/separatrix.eps}
      };
      \coordinate (origin) at (10,0);
      \coordinate (Emin) at ($ (origin) + (0,.5) $);
      \coordinate (E0) at ($ (origin) + (0,2) $);
      \coordinate (E1) at ($ (origin) + (-1,4) $);
      \coordinate (E2) at ($ (origin) + (1,4) $);
      \node at ($ (Emin) + (.7,0) $) {$E_{\min}$};
      \node[color=red] at ($ (E0) + (.5,0) $) {$E_{0}$};
      \node at ($ (E1) + (0,.3) $) {$p < 0$};
      \node at ($ (E2) + (0,.3) $) {$p > 0$};
      \draw[thick,color=c2] (Emin) -- (E0) node [color=black, midway, right] {};
      \draw[thick,color=c1] (E0) -- (E1) node [color=black, midway, left] {};
      \draw[thick,color=c3] (E0) -- (E2) node [color=black, midway, right] {};
      \node at (E0) [circle,fill,inner sep=1.5pt,color=red]{};
      \node at (Emin) [circle,fill,inner sep=1.5pt]{};
      \end{tikzpicture}%
  \end{figure}
  \vspace{-.5cm}
  In this limit, it holds that
  \[
    % \norm{\mathcal L^{-1}}_{\mathcal B\left(L^2_0(\mu)\right)} = \mathcal O \left( \alert{\gamma^{-1}} \right),
    % \qquad
    \phi = - \mathcal L^{-1} p = \alert{\gamma^{-1}} \phi_{\rm und} + \mathcal O(\gamma^{-1/2}).
  \]
  % The limiting function $\phi_{\rm und}$ is continuous but \alert{not in $H^1(\mu)$}.
\end{frame}


\begin{frame}
  {Scaling of the effective diffusion coefficient for \textcolor{yellow}{Langevin} dynamics\footfullcite{MR2427108}}
  In \alert{dimension 1},
  \( \lim_{\gamma \to 0} \gamma D^{\gamma} = D_{\rm und} \) and \( \lim_{\gamma \to \infty} \gamma D^{\gamma} = D_{\rm ovd}. \)
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.5\linewidth,height=0.33\linewidth]{figures/scaling_diffusion_langevin.png}
  \end{figure}

  \textbf{\emph{Our aims in this work:}}
  \begin{itemize}
    \item How can we efficiently estimate the effective diffusion coefficient when \alert{$\gamma \ll 1$}?
    \item How does the mobility scale as \alert{$\gamma \to 0$} in the multidimensional setting?
  \end{itemize}
\end{frame}


\subsection{Efficient mobility estimation}%

\begin{frame}
  {Brief literature review}
  % Consider the Langevin dynamics with $(\vect q_t, \vect p_t) \in (\real^{\alert{d}} \times \real^{\alert{d}})$:
  % \begin{equation*}
  %     \left\{
  %       \begin{aligned}
  %       & \d \vect q_t = \vect p_t \,\d t, \\
  %       & \d \vect p_t = - \grad V (\vect q_t)  \, \d t - \gamma \vect p_t \, \d t + \sqrt{2 \gamma \beta^{-1}} \, \d \vect W_t.
  %       \end{aligned}
  %     \right.
  % \end{equation*}
  In dimension $> 1$, it \alert{does not hold} that
  $\gamma D^{\gamma}_{\vect e} \xrightarrow[\gamma \to 0]{} D_{\rm und}$ when $V$ is \alert{non separable}, e.g.
  \[
    V(\vect q) = - \frac{1}{2} \Big( \cos(q_1) + \cos(q_2) \Big) - \alert{\delta} \cos(q_1) \cos(q_2)
  \]

  \textbf{Open question:}
  how does $D^\gamma_{\vect e}$ behave when $\gamma \ll 1$ and \alert{$d = 2$}?
  % \begin{block}
    % {Open question: how does $D^\gamma_{\vect e}$ behave when $\gamma \ll 1$ and \alert{$d = 2$}?}

  Various answers are given in the literature:
  \begin{itemize}
    \item
      $D^{\gamma}_{\vect e} \propto \gamma^{-1/2}$ for specific potentials\footfullcite{chen1996surface};

    \item
      $D^{\gamma}_{\vect e} \propto \gamma^{-1/3}$ for specific potentials~\footfullcite{Braun02};

    \item
      $D^{\gamma}_{\vect e} \propto \gamma^{-\sigma}$ with $\sigma$ depending on the potential~\footfullcite{roussel_thesis}.
  \end{itemize}
  % \end{block}
  \vspace{.5cm}
\end{frame}

\begin{frame}[label=continue]
  {Numerical approaches for calculating the effective diffusion coefficient}
  \begin{itemize}
    \itemsep.5cm
    \item \emph{Linear response approach}:
        \begin{equation*}
          D_{\vect e} = \lim_{\eta \to 0} \frac{1}{\beta \alert{\eta}} \expect_{\alert{\mu_\eta}} \, (\vect e^\t \vect p).
        \end{equation*}
        where $\mu_{\eta}$ is the invariant distribution of the system with external forcing.

    \item \emph{Green--Kubo formula}: Since $-\mathcal L^{-1} = \int_{0}^{\infty} \e^{t \mathcal L} \, \d t$,
      \begin{align*}
        D_{\vect e} &= \int - \mathcal L^{-1}(\vect e^\t \vect p) \, (\vect \e^\t \vect p) \, \d \mu = \int_{0}^{\infty} \! \! \! \int \e^{t \mathcal L} (\vect e^\t \vect p) (\vect e^\t \vect p) \, \d \mu \, \d t  \\
          &= \int_{0}^{\infty} \expect_{\mu}\bigl((\vect e^\t \vect p_0) (\vect e^\t \vect p_t)\bigr) \, \d t.
      \end{align*}

    \item \emph{Einstein's relation}:
      \[
        D_{\vect e} = \lim_{t \to \infty}  \frac{1}{2t} \expect_{\mu} \Bigl[ \bigl|\vect e^\t (\vect q_t - \vect q_0)\bigr|^2 \Bigr].
      \]

    \item Deterministic method, e.g. \emph{Fourier/Hermite Galerkin}, for the Poisson equation
      \[
        - \mathcal L \phi_{\vect e} = \vect e^\t \vect p, \qquad D_{\vect e} = \ip{\phi_{\vect e}}{p}.
      \]
  \end{itemize}
\end{frame}

% \begin{frame}
%   {Fourier/Hermite Galerkin method for one-dimensional Langevin dynamics}
%
%   Saddle-point formulation\footfullcite{roussel2018spectral}:
%   find $(\Phi_N, \alpha_N) \in V_N \times \real$ such that
%   \begin{align}
%        \notag
%        - \Pi_N \, \mathcal L \, \Pi_N \alert{\Phi_N} + \alert{\alpha_N} u_N &= \Pi_N p, \\
%        \label{eq:constraint}
%         \ip{\Phi_N}{u_N} &= 0,
%   \end{align}
%   where
%   \begin{itemize}
%     \item $\Pi_N$ is the $L^2(\mu)$ projection operator on a finite-dimensional subspace $V_N$,
%     \item $u_N = \Pi_N 1 / \norm{\Pi_N 1}$.
%       Eq.~\eqref{eq:constraint} ensures that the system is \emph{well-conditioned}.
%   \end{itemize}
%
%   \vspace{.2cm}
%   For $V_N$, we use the following basis functions:
%   \[
%     e_{i,j} = {\left( Z \, \e^{\beta \left( H(q,p) + |z|^2 \right)} \right)}^{\frac{1}{2}} \, G_i(q) \, H_j(p), \qquad 0 \leq i,j \leq N,
%   \]
%   where $(G_i)_{i \geq 0}$ are \emph{trigonometric functions} and $(H_j)_{i \geq 0}$ are \emph{Hermite polynomials}.
%
%   $\rightarrow$ \alert{Impractical} in two or more spatial dimensions.
% \end{frame}

\begin{frame}
  {Estimation of the effective diffusion coefficient from Einstein's relation}
  Consider the following estimator of the effective diffusion coefficient $D_{\vect e}$:
  \[
    \emph{u(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2T}}, \qquad (\vect q_0, \vect p_0) \sim \mu.
  \]

  \textbf{Bias of this estimator:}
  \begin{align*}
      \notag
      \expect \bigl[u(T)\bigr]
      % &= \int_{0}^{\infty} \ip{\e^{t \mathcal L}(\vect e^\t \vect p)}{\vect e^\t \vect p}  \d t
      % - \int_{0}^{\infty} \ip{\e^{t \mathcal L} (\vect e^\t \vect p)}{\vect e^\t \vect p} \min\left\{1, \frac{t}{T}\right\} \, \d t \\
      &= D_{\vect e} - \int_{0}^{\infty} \ip{\e^{t \mathcal L} (\vect e^\t \vect p)}{\vect e^\t \vect p} \min\left\{1, \frac{t}{T}\right\} \, \d t.
  \end{align*}
  Using the decay estimate for the semigroup\footfullcite{roussel2018spectral}
  \[
    \norm{\e^{t \mathcal L}}_{\mathcal B\left(L^2_0(\mu)\right)} \leq L \e^{- \ell \min\{\gamma, \gamma^{-1}\}t},
  \]
  we deduce
  \[
    \left\lvert \expect[u(T)] - D_{\vect e} \right\rvert \leq \frac{C \textcolor{red}{\max\{\gamma^2, \gamma^{-2}\}}}{T}.
  \]
\end{frame}

\begin{frame}
  {Variance of the estimator $u(T)$ for large $T$}
  For $T \gg 1$,
  it holds approximately that
  \[
    \frac{\vect e^\t (\vect q_T - \vect q_0)}{\sqrt{2T}} \sim \mathcal N(0, D_{\vect e})
    \qquad \leadsto \qquad
    u(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2 D_{\vect e} T} \sim \chi^2 (1).
  \]
  Therefore, we deduce
  \[
    \lim_{T \to \infty} \var \bigl[u(T)\bigr] = 2 D_{\vect e}^2.
  \]
  The relative standard deviation (asymptotically as $T \to \infty$) is therefore
  \[
    \lim_{T \to \infty} \frac{\sqrt{\var \bigl[u(T)\bigr]}}{\expect \bigl[u(T)\bigr]} = \sqrt{2}
    \qquad \leadsto \text{\emph{independent} of $\gamma$}.
  \]

  \begin{block}{Scaling of the  mean square error when using $J$ realizations}
    Assuming an asymptotic scaling as $\gamma^{-\sigma}$ of $D_{\vect e}$, we have
    \[
      \forall \gamma \in (0, 1), \qquad
      \frac{\rm MSE}{D_{\vect e}^2} \leq \frac{C}{\gamma^{4-2 \sigma} T^2} + \frac{2}{J}
    \]
  \end{block}
\end{frame}

% \subsection{Variance reduction using control variates}
\begin{frame}
  {Variance reduction using \textcolor{yellow}{control variates}}
  Let $\phi_{\vect e}$ denote the solution to the \emph{Poisson equation}
  \[
    - \mathcal L \phi_{\vect e}(\vect q, \vect p) = \vect e^\t \vect p, \qquad \phi_{\vect e} \in L^2_0(\mu).
  \]
  and let $\psi_{\vect e}$ denote an approximation of $\phi_{\vect e}$.
  By It\^o's formula,
  we obtain
  \[
    \phi_{\vect e}(\vect q_T, \vect p_T) - \phi_{\vect e}(\vect q_0, \vect p_0)
    = - \int_{0}^{T} \vect e^\t \vect p_t \, \d t + \sqrt{2 \gamma \beta^{-1}} \int_{0}^{T} \grad_{\vect p} \phi_{\vect e}(\vect q_t, \vect p_t) \cdot \d \vect W_t.
  \]
  Therefore
  \begin{align*}
    \vect e^\t (\vect q_T - \vect q_0)
    &= \int_{0}^{T} \vect e^\t \vect p_t \, \d t \\
    &\approx  - \psi_{\vect e}(\vect q_T, \vect p_T) + \psi_{\vect e}(\vect q_0, \vect p_0) + \sqrt{2 \gamma \beta^{-1}} \int_{0}^{T} \grad_{\vect p} \psi_{\vect e}(\vect q_t, \vect p_t) \cdot \d \vect W_t
    =: \emph{\xi_T}.
  \end{align*}
  which suggests the \emph{improved estimator}
  \[
    v(T) = \frac{\abs{\vect e^\t (\vect q_T - \vect q_0)}^2}{2T} - \left( \frac{\abs{\xi_T}^2}{2T} - \lim_{T\to \infty}\expect \left[ \frac{\abs{\xi_T}^2}{2T} \right]  \right).
  \]
\end{frame}

\begin{frame}
  {Properties of the improved estimator}
  \textbf{Smaller bias} if $-\mathcal L \psi_{\vect e} \approx \vect e^\t \vect p$:
    \begin{align*}
        \label{eq:basic_bound_bias}
        \abs{\expect \bigl[ v(T) \bigr] - D^{\gamma}_{\vect e}}
                &\leq  \frac{L \max\{\gamma^2, \gamma^{-2}\}}{T \ell^2 }  \,  \emph{\norm{\vect e^\t \vect p + \mathcal L \psi_{\vect e}}}  \left(\beta^{-1/2} + \norm{\mathcal L \psi_{\vect e}} \right).
    \end{align*}

  \textbf{Smaller variance}:
    \begin{equation*}
        \begin{aligned}[b]
            \var \bigl[v(T)\bigr]
            \leq
            C &\left( T^{-1} \emph{\norm{\phi_{\vect e} - \psi_{\vect e}}[L^4(\mu)]}^2  + \gamma \emph{\norm{\grad_{\vect p} \phi_{\vect e} - \grad_{\vect p} \psi_{\vect e}}[L^4(\mu)]}^2 \right) \\
              &\quad \times \left( T^{-1} \norm{\phi_{\vect e} + \psi_{\vect e}}[L^4(\mu)]^2  + \gamma \norm{\grad_{\vect p} \phi_{\vect e} + \grad_{\vect p} \psi_{\vect e}}[L^4(\mu)]^2 \right).
        \end{aligned}
    \end{equation*}


    \textbf{Construction of $\psi_{\vect e}$ in the \alert{one-dimensional setting}}. We consider two approaches:
    \begin{itemize}
      \item Approximate the solution to the Poisson equation by a Galerkin method.
      \item Use asymptotic result for the Poisson equation:
        \[
          \gamma \phi \xrightarrow[\gamma \to 0]{L^{2}(\mu)} \phi_{\rm und},
        \]
        which suggests letting $\psi = \phi_{\rm und} / \gamma$.
    \end{itemize}
\end{frame}

\begin{frame}
  {Construction of the approximate solution $\psi_{\vect e}$ \textcolor{yellow}{in dimension 2}}
  We consider the potential
  \[
    V(\vect q) = - \frac{1}{2} \Big( \cos(q_1) + \cos(q_2) \Big) - \alert{\delta} \cos(q_1) \cos(q_2).
  \]
  \begin{itemize}
    \item
      For this potential, $\mat D$ is isotropic
      $\leadsto$ sufficient to consider $\vect e = (1, 0)$,
      \[
        D_{(1,0)} = \ip{\phi_{(1, 0)}}{p_1},
        \qquad - \mathcal L \phi_{(1,0)}(\vect q, \vect p) = p_1.
      \]

    \item
      If \emph{$\delta = 0$}, then the solution is $\phi_{(1, 0)}(\vect q, \vect p) = \phi_{\rm 1D} (q_1, p_1)$,
      where $\phi_{\rm 1D}$ solves
      \[
        - \mathcal L_{\rm 1D} \phi_{\rm 1D}(q, p) = p, \qquad V_{\rm 1D}(q) = \frac{1}{2} \cos (q).
      \]

    \item
      We take $\emph{\psi_{(1,0)}(\vect q, \vect p) = \psi_{\rm 1D}(q_1, p_1)}$,
      where $\psi_{\rm 1D} \approx \phi_{\rm 1D}$.
  \end{itemize}
\end{frame}

\subsection{Numerical experiments}%
\begin{frame}
  {Numerical experiments for the one-dimensional case (1/2)}
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.99\linewidth]{figures/underdamped_1d.pdf}
  \end{figure}
\end{frame}

\begin{frame}
  {Numerical experiments for the one-dimensional case (2/2)}
  \begin{figure}[ht]
    \centering
    \includegraphics[width=0.99\linewidth]{figures/time.pdf}
    \caption{Evolution of the sample mean and standard deviation, estimated from $J = 5000$ realizations for $\gamma = 10^{-3}$.}
  \end{figure}
\end{frame}

\begin{frame}
  {Performance of the control variates approach in dimension 2}
  \begin{figure}[ht]
    \centering
    \includegraphics[width=0.49\linewidth]{figures/var-delta-galerkin.pdf}
    \includegraphics[width=0.49\linewidth]{figures/var-delta-underdamped.pdf}
    \label{fig:time_bias_deviation_2d}
  \end{figure}
  \begin{itemize}
    \item Variance reduction is possible if $\abs{\delta}/\gamma \ll 1$;
    \item Control variates are \alert{not very useful} when $\gamma \ll 1$ and $\delta$ is fixed.
  \end{itemize}
\end{frame}

\begin{frame}
  {Scaling of the mobility in dimension 2}
  \begin{figure}[ht]
    \centering
    \includegraphics[width=0.9\linewidth]{figures/diffusion.pdf}
    \label{fig:time_bias_variance_2d}
  \end{figure}
\end{frame}

\begin{frame}{Summary of part I and perspectives for future work}
  In this part, we presented
  \begin{itemize}
    \item a variance reduction approach for efficiently estimating the mobility;
    \item numerical results showing that the scaling of the mobility is \emph{not universal}.
  \end{itemize}

  \textbf{Perspectives for future work:}
  \begin{itemize}
    \item Use alternative methods (PINNs, Gaussian processes) to solve the Poisson equation;
    \item Improve and study variance reduction approaches for other transport coefficients.
  \end{itemize}
\end{frame}

\section{Optimal importance sampling for overdamped Langevin dynamics}

% \begin{frame}
%   \begin{center}
%     \huge Part II: Optimal importance sampling for overdamped Langevin dynamics
%   \end{center}
% \end{frame}

\begin{frame}
    \begin{center}
      \Large
      \color{blue}
      Part II: importance sampling for overdamped Langevin dynamics
    \end{center}

    \begin{figure}
        \centering
        \begin{minipage}[t]{.2\linewidth}
            \centering
            \raisebox{\dimexpr-\height+\ht\strutbox}{%
              \includegraphics[height=\linewidth]{figures/collaborators/martin.jpg}
            }
        \end{minipage}\hspace{.03\linewidth}%
        \begin{minipage}[t]{.21\linewidth}
          Martin Chak
          \vspace{0.2cm}

          \includegraphics[height=1.2cm,width=\linewidth,keepaspectratio]{figures/collaborators/sorbonne.png}
          \flushleft \scriptsize
          Sorbonne Université
        \end{minipage}\hspace{.1\linewidth}%%
        \begin{minipage}[t]{.2\linewidth}
            \centering
            \raisebox{\dimexpr-\height+\ht\strutbox}{%
              \includegraphics[height=\linewidth]{figures/collaborators/tony.jpg}
            }
        \end{minipage}\hspace{.03\linewidth}%
        \begin{minipage}[t]{.21\linewidth}
          Tony Lelièvre
          \vspace{0.2cm}

          \includegraphics[height=1.2cm,width=\linewidth,keepaspectratio]{figures/collaborators/enpc.png}
          \flushleft \scriptsize
          CERMICS \& Inria
        \end{minipage}\hspace{.1\linewidth}%%

        \vspace{.5cm}
        \begin{minipage}[t]{.2\linewidth}
            \centering
            \raisebox{\dimexpr-\height+\ht\strutbox}{%
              \includegraphics[height=\linewidth]{figures/collaborators/gabriel.jpg}
            }
        \end{minipage}\hspace{.01\linewidth}%
        \begin{minipage}[t]{.24\linewidth}
          Gabriel Stoltz
          \vspace{0.2cm}

          \includegraphics[height=1.2cm,width=\linewidth,keepaspectratio]{figures/collaborators/enpc.png}
          \flushleft \scriptsize
          CERMICS \& Inria
        \end{minipage}
    \end{figure}
\end{frame}

\subsection{Background and problem statement}

\begin{frame}
  {The sampling problem}

  \begin{block}
    {Objective of the sampling problem}
    Calculate averages with respect to
    \[
      \mu = \frac{\e^{-V}}{Z},
      \qquad Z = \int_{\torus^d} \e^{-V}.
    \]
    \vspace{-.4cm}
  \end{block}

  \vspace{-.2cm}
  \textbf{Often in applications}:
  \begin{itemize}
    \item The dimension $d$ is large;
    \item The normalization constant $Z$ is unknown;
    \item We cannot generate i.i.d.\ samples from~$\mu$.
  \end{itemize}

  \textbf{Markov chain Monte Carlo (MCMC) approach}:
  \[
      I := \mu(f) \approx \mu^T (f) := \frac{1}{T} \int_{0}^{T} f(Y_t) \, \d t
  \]
  for a Markov process $(Y_t)_{t\geq 0}$ that is \emph{ergodic} with respect to~$\mu$.

  \textbf{Example}: \emph{overdamped Langevin} dynamics
  \[
      \d Y_t = -\nabla V(Y_t) \, \d t + \sqrt{2} \, \d W_t,
      \qquad Y_0 = y_0.
  \]
\end{frame}

\begin{frame}
  {Importance sampling in the MCMC context}
  If $(X_t)_{t \geq 0}$ is a Markov process ergodic with respect to
  \[
      \mu_{U} = \frac{\e^{-V - U}}{Z_U},
      \qquad Z_U = \int_{\torus^d} \e^{-V-U},
  \]
  then $I = \mu(f)$ may be approximated by
  \begin{equation*}
      \label{eq:estimator}
      \mu^T_U(f) :=
      \frac
      {\displaystyle \frac{1}{T} \int_0^T (f \e^U)(X_t) \, \d t}
      {\displaystyle \frac{1}{T} \int_0^T(\e^U)(X_t) \, \d t}.
  \end{equation*}

  \textbf{Markov process}: \emph{overdamped Langevin} dynamics
  \[
      \d X_t = -\nabla (V+U)(X_t) \, \d t + \sqrt{2} \, \d W_t,
      \qquad X_0 = x_0.
  \]

  \textbf{Asymptotic variance}:
  Under appropriate conditions,
  it holds that
  \[
      \sqrt{T} \bigl( \mu^T_U(f) - I \bigr)
      \xrightarrow[T \to \infty]{\rm Law} \mathcal N\bigl(0, \sigma^2_f[U]\bigr).
  \]

  \begin{block}
    {Objective}
    Find $U$ such that the asymptotic variance $\sigma^2_f[U]$ is minimized.
  \end{block}
\end{frame}

\begin{frame}
  {Background: importance sampling in the i.i.d.\ setting (1/2)}
  Given i.i.d.\ samples $\{X^1, X^2, \dotsc\}$ from $\mu_U$,
  we define
  \[
      \mu_U^N(f) :=
      \displaystyle \frac
      {\sum_{n=1}^{N} (f \e^U)(X^{n})}
      {\sum_{n=1}^{N} (\e^U)(X^{n})}
      = I + \displaystyle \frac
      {\frac{1}{N} \sum_{n=1}^{N} \left((f-I) \e^U\right)(X^{n})}
      {\frac{1}{N} \sum_{n=1}^{N} (\e^U)(X^{n})},
  \]

  \textbf{Numerator:} by the \emph{central limit theorem},
  \[
    \frac{1}{\sqrt{N}} \sum_{n=1}^{N} \left((f-I) \e^U\right) (X^{n})
    \xrightarrow[N \to \infty]{\rm Law} \mathcal N\left(0, \int_{\torus^d} \abs*{(f-I) \e^U}^2 \, \d \mu_{U}\right)
  \]

  \textbf{Denominator:} by the strong law of large numbers,
  \[
    \frac{1}{N} \sum_{n=1}^{N} \left(\e^U\right)\left(X^{n}\right) \xrightarrow[N \to \infty]{\rm a.s.}
    \frac{Z}{Z_U}.
  \]

  \textbf{Therefore}, by Slutsky's theorem,
  \[
      \sqrt{N} \bigl( \mu^N_U(f) - I\bigr)
      \xrightarrow[T \to \infty]{\rm Law} \mathcal N\bigl(0, s^2_f[U]\bigr),
      \qquad
      s^2_f[U] := \frac{2 Z_U^2}{Z^2} \int_{\torus^n} \bigl\lvert (f-I) \e^U \bigr\rvert^2 \, \d \mu_{U}.
  \]
\end{frame}

\begin{frame}
  {Background: importance sampling in the i.i.d.\ setting (2/2)}
  By the Cauchy--Schwarz inequality,
  it holds that
  \[
      s^2_f[U]
      \geq \frac{2Z_U^2}{Z^2} \left( \int_{\torus^d} \abs{f-I} \e^U \, \d \mu_{U} \right)^2,
  \]
  with equality when $\abs{f-I} \e^U$ is constant.

  \begin{block}
    {Optimal importance distribution}
    The \emph{optimal $\mu_U$} in the i.i.d.\ setting is
    \[
        \mu_{U} \propto \abs{f-I} \e^{-V}
    \]
  \end{block}

  \textbf{Objectives}:
  \begin{itemize}
    \item Is there a counterpart of this formula in the \emph{MCMC setting}?
    \item If not, can we approximate the optimal distribution numerically?
  \end{itemize}
\end{frame}

\subsection{Minimizing the asymptotic variance for one observable}
\begin{frame}
  {Formula for the asymptotic variance}
  Let $\mathcal L_U$ denote the generator of the Markov semigroup associated to the modified potential;
  \[
      \mathcal L_U = - \nabla (V + U) \cdot \nabla + \Delta.
  \]
  \begin{block}
    {Limit theorem}
    Under appropriate conditions,
    it holds that
    \[
      \sqrt{T} \bigl( \mu^T_U(f) - I\bigr)
      \xrightarrow[T \to \infty]{\rm Law} \mathcal N\bigl(0, \sigma^2_f[U]\bigr).
    \]
    The \emph{asymptotic variance} is given by
    \[
      \sigma^2_f[U]
      = \frac{2Z_U^2}{Z^2}\int_{\torus^d} \phi_U (f-I) \, \e^U \, \d\mu_{U},
    \]
    where $\phi_U$ is the unique solution in~$H^1(\mu_{U}) \cap L^2_0(\mu_{U})$ to
    \[
      -\mathcal L_U \phi_{U} = (f- I) \e^U.
    \]
  \end{block}
  \textbf{Main ideas of the proof:} central limit theorem for martingales, Slutsky's theorem.
\end{frame}

\begin{frame}
  {Explicit optimal $U$ in dimension 1}
  In \emph{dimension one}, it holds that
  \begin{equation}
    \label{eq:lower_bound_asymvar}
    \sigma^2_f[U] \geq \frac{2}{Z^2}  \inf_{A \in \real} \bigg(\int_{\torus} \bigl\lvert F(x) + A \bigr\rvert \d x \bigg)^2.
  \end{equation}
  where
  \[
    F(x) := \int_0^x \bigl( f(\xi)-I \bigr) \e^{-V(\xi)}\d \xi.
  \]
  This inequality~\eqref{eq:lower_bound_asymvar} is an equality for
  \[
    U(x) = U_*(x) = - V(x) -\ln\abs*{F(x) + A_*},
  \]
  where $A_*$ is the constant achieving the infimum in~\eqref{eq:lower_bound_asymvar}.

  \begin{itemize}
    \item The potential $U_*$ is generally \alert{singular}: impractical for numerics\dots
    \item The lower bound in~\eqref{eq:lower_bound_asymvar} can be approached by a smooth~$U$.
  \end{itemize}
\end{frame}

\begin{frame}
  {Example (1/2)}
  Assume that $V = 0$ and $f(x) = \cos(x)$.
  \begin{figure}[ht]
    \centering
    \includegraphics[width=0.8\linewidth]{figures/driftopt/1d_optimal_cosine.pdf}
    \label{fig:optimal_perturbation_potential}
  \end{figure}
  $\rightsquigarrow$ The optimal potential ``divides'' the domain into two parts.
\end{frame}

\begin{frame}
  {Example (2/2)}
  Assume that $V(x) = 5\cos(2 x)$ and~$f(x) = \sin(x)$.
  The target measure is \alert{multimodal}.
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.8\linewidth]{figures/driftopt/1d_optimal_metastable.pdf}
      \label{fig:optimal_perturbation_potential_1d_metastable}
  \end{figure}
  \emph{Variance reduction} by a factor $> 1000!$
\end{frame}

\begin{frame}
  {Finding the optimal $U$ in the multidimensional setting}

  \begin{proposition}
      [Functional derivative of the asymptotic variance]
      Let $\phi_U$ denote the solution to
      \begin{equation}
        \label{eq:poisson}
        -\mathcal L_U \phi_{U} = (f- I) \e^U.
      \end{equation}
      Under appropriate conditions,
      it holds for all $\delta U \in C^{\infty}(\torus^d)$ that
      \begin{align}
          \notag
          \frac{1}{2} \d \sigma^2_f[U] \cdot \delta U
          &:= \lim_{\varepsilon \to 0} \frac{1}{\varepsilon} \bigl(\sigma^2_f[U + \varepsilon \delta U] - \sigma^2_f[U]\bigr) \\
          \label{eq:funcder}
          &= \frac{Z_U^2}{Z^2} \int_{\torus^d} \delta U \bigg( \abs*{\nabla{\phi_{U}}}^2 - \int_{\torus^d} \abs*{\nabla {\phi_{U}}}^2 \, \d \mu_{U} \bigg) \, \d \mu_{U}.
      \end{align}
  \end{proposition}
  \textbf{Steepest descent approach}:
  \begin{itemize}
    \item Solve the Poisson equation~\eqref{eq:poisson} numerically;
    \item Construct an ascent direction $G$ for $\sigma^2_f$ using~\eqref{eq:funcder}, e.g.\ $\delta U =  \abs*{\nabla{\phi_{U}}}^2$;
    \item Perform a step in this direction: $U \leftarrow U - \eta G$;
    \item Repeat until convergence.
  \end{itemize}
\end{frame}

\begin{frame}
  {No smooth minimizers}
  \begin{corollary}
      [No smooth minimizer]
      \label{corollary:no_smooth_minimizer}
      Unless~$f$ is constant,
      there is no perturbation potential~$U \in C^\infty(\torus^n)$ that is a critical point of $\sigma^2_f[U]$.
  \end{corollary}
  \textbf{Proof.}
  Assume by contradiction that $U_*$ is smooth critical point.
  Then
  \[
        0 = \frac{1}{2} \d \sigma^2_f[U_*] \cdot \delta U
        = \frac{Z_U^2}{Z^2} \int_{\torus^d} \delta U \bigg( \abs*{\nabla{\phi_{U_*}}}^2 - \int_{\torus^d} \abs*{\nabla {\phi_{U_*}}}^2 \, \d \mu_{U_*} \bigg) \, \d \mu_{U_*},
  \]
  for all $\delta U \in C^{\infty}(\torus^d)$.
  \begin{itemize}
    \item Therefore, it must hold that $\abs*{\nabla {\phi_{U}}}^2 = C$ is constant.
    \item Since $\phi_U$ is a smooth function, there is $x \in \torus^d$ such that $\nabla \phi_U(x) = 0$.
    \item Consequently $C = 0$ and so $\nabla \phi_U = 0$: \alert{contradiction} because then $\mathcal L_{U_*} \phi_U = 0$.
  \end{itemize}

  \vspace{.5cm}
  $\rightsquigarrow$ The optimal perturbation potential is \alert{not convenient} in practice\dots
\end{frame}

\begin{frame}
  {Example (1/2)}
  Assume that $V = 0$ and $f(x) = \sin(x_1) + \sin(x_2)$.
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_optimal.pdf}
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_optimal_poisson.pdf}
      \caption{%
          Optimal total potential (left)
          together with the solution to the associated Poisson equation (right).
      }
      \label{fig:2d_first_example}
  \end{figure}
  $\rightsquigarrow$ The domain is again divided into subdomains that suffice for estimating~$I$.
\end{frame}

\begin{frame}
  {Example (2/2): multimodal target $\e^{-V}$}
  Assume that $V(x) = 2\cos(x_1) - \cos(x_2)$ and~$f(x) = \sin(x_1)$.
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_optimal_multimodal.pdf}
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_optimal_multimodal_heatmap.pdf}
      \label{fig:2d_metastable}
  \end{figure}
  \emph{Variance reduction} by a factor $\approx 6$!
\end{frame}

\subsection{Minimizing the asymptotic variance for a class of observables}
\begin{frame}
  {Alternative: minimizing the expected variance over \textcolor{yellow}{a class of observables}}
  Assume that the observables are well described by a Gaussian random field
  \[
      f = \sum_{j=1}^{J} \sqrt{\lambda_j} u_j f_j,
      \qquad u_j \sim \mathcal N(0, 1),
      \qquad \lambda_j \in (0, \infty).
  \]
  \textbf{Question:} can we find~$U$ such that $\sigma^2[U] := \expect \bigl( \sigma^2_f[U] \bigr)$ is minimized?

  \begin{itemize}
    \item It holds that
      \[
        \sigma^2[U] = \sum_{j=1}^{J} \lambda_j \sigma^2_{f_j}.
      \]

    \item
      The functional derivative of $\sigma^2[U]$ is given by
      \[
          \frac{1}{2} \d\sigma^2[U] \cdot \delta U
          = \frac{Z_U^2}{Z^2} \int_{\torus^d} \left( \delta U - \int_{\torus^d} \delta U \, \d \mu_U \right) \left( \sum_{j=1}^{J} \lambda_j \abs*{\nabla{\phi_j}}^2  \right) \, \d \mu_{U}.
      \]

    \item
      The steepest descent approach can be employed in this case too!
  \end{itemize}
\end{frame}

\begin{frame}
  {Example}
  Here $V(x) = 2 \cos(2 x_1) - \cos(x_2)$ and $f \sim \mathcal N\bigl(0, (\laplacian + \mathcal I)^{-1}\bigr)$.
  \begin{figure}[ht]
      \centering
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_initial_class_metastable.pdf}
      \includegraphics[width=0.49\linewidth]{figures/driftopt/2d_optimal_class_metastable.pdf}
      \caption{%
          Potential~$V$ (left) and optimal potential~$V+U$ (right).
      }
  \end{figure}
\end{frame}

\begin{frame}
  {Summary of part II and perspectives for future work}
  In this part, 
  \begin{itemize}
    \item We studied an importance sampling approach for the overdamped Langevin dynamics.
    \item We proposed an approach for calculating the optimal perturbation potential.
  \end{itemize}

  \textbf{Perspectives}:
  \begin{itemize}
    \item Solving the Poisson equation accurately is not possible in high dimension.
    \item Application to high-dimensional systems:
      \[
        U(x) = U\bigl(\xi(x)\bigr), \qquad \xi \text{ reaction coordinate}.
      \]
  \end{itemize}
  \vspace{1cm}
  \begin{center}
    \Large
    \emph{Thank you for your attention!}
  \end{center}
\end{frame}

\appendix

\begin{frame}[noframenumbering,plain]
  {Connection with the asymptotic variance of MCMC estimators}
  \textbf{Ergodic theorem\footfullcite{MR885138}}:  for an observable $\varphi \in L^1(\mu)$,
  \[
    \widehat \varphi_t = \frac{1}{t} \int_{0}^{t} \varphi(\vect q_s, \vect p_s) \, \d s
    \xrightarrow[t \to \infty]{a.s.} \expect_{\mu} \varphi.
  \]

  \textbf{Central limit theorem\footfullcite{MR663900}}:
  If the following \emph{Poisson equation} has a solution $\phi \in L^2(\mu)$,
  \[
      - \mathcal L \phi = \varphi - \expect_{\mu} \varphi,
  \]
  then a central limit theorem holds:
  \[
    \sqrt{t} \bigl(\widehat \varphi_t - \expect_{\mu}\varphi\bigr)
    \xrightarrow[t \to \infty]{\rm Law} \mathcal N(0, \sigma^2_{\varphi}),
    \qquad
    \sigma^2_{\varphi}
    = \ip{\phi}{\varphi - \expect_{\mu} \varphi}.
  \]

  \textbf{Connection with effective diffusion}: Apply this result with $\varphi(\vect q, \vect p) = \vect e^\t \vect p$.
\end{frame}

\end{document}

% vim: ts=2 sw=2