summaryrefslogtreecommitdiff
path: root/main.tex
blob: 4ad85755db496e05b0f033e5c38661d9d229cb9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
\documentclass[10pt]{beamer}
\renewcommand{\emph}[1]{\textcolor{blue}{#1}}
\newif\iflong
\longfalse

\input{header}
\input{macros}

\newcommand{\highlight}[2]{%
  \colorbox{#1!20}{$\displaystyle#2$}}

\newcommand{\hiat}[4]{%
  \only<#1>{\highlight{#3}{#4}}%
  \only<#2>{\highlight{white}{#4}}%
}

\graphicspath{{figures/}}
\AtEveryCitekey{\clearfield{pages}}
\AtEveryCitekey{\clearfield{eprint}}
\AtEveryCitekey{\clearfield{volume}}
\AtEveryCitekey{\clearfield{number}}
\AtEveryCitekey{\clearfield{month}}
\addbibresource{main.bib}

\title{Nonequilibrium systems and computation of transport coefficients\\[.3cm]
  \small \textcolor{yellow}{SINEQ Summer school}%
}

\author{%
    Urbain Vaes \texorpdfstring{\\\texttt{urbain.vaes@inria.fr}}{}
}

\institute{%
    MATHERIALS -- Inria Paris
    \textcolor{blue}{\&} CERMICS --
    École des Ponts ParisTech
}

\date{\today}
\begin{document}

\begin{frame}[plain]
  \begin{figure}[ht]
    \centering
    % \includegraphics[height=1.5cm]{figures/logo_matherials.png}
    % \hspace{.5cm}
    \includegraphics[height=1.2cm]{figures/logo_inria.png}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_ponts.png}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_ERC.jpg}
    \hspace{.5cm}
    \includegraphics[height=1.5cm]{figures/logo_EMC2.png}
  \end{figure}
  \titlepage
\end{frame}

\begin{frame}
  {Some references}
  \begin{itemize}
    \item \fullcite{MR3509213}
    \item \fullcite{pavliotis2011applied}
    \item Lecture notes by Gabriel Stoltz  on computational statistical physics:
        \url{http://cermics.enpc.fr/~stoltz/Cours/intro_phys_stat.pdf}
  \end{itemize}
\end{frame}

\begin{frame}
  {Outline}
  \tableofcontents
\end{frame}

\section{Introduction}
\begin{frame}
  {Transport coefficients}
  At the \alert{macroscopic} level,
  transport coefficients relate an external forcing to an average response expressed through some steady-state flux.

  \textbf{Examples:}
  \begin{itemize}
    \item The \emph{mobility} relates an external force to a velocity;
    \item The \emph{heat conductivity} relates a temperature difference to a heat flux;
    \item The \emph{shear viscosity} relates a shear velocity to a shear stress;
  \end{itemize}

  \vspace{.3cm}
  \textbf{Challenges we do not address:}
  \begin{itemize}
    \item Choose thermodynamical ensemble;
    \item Prescribe microscopic dynamics;
  \end{itemize}
\end{frame}

\begin{frame}
  {Computation of transport coefficients}
  Three main classes of methods:
  \begin{itemize}
    \itemsep.2cm
    \item
      Non-equilibrium techniques
      \begin{itemize}
        \item Calculations from the steady state of a system out of equilibrium.
        \item Comprises bulk-driven and boundary-driven approaches.
      \end{itemize}

    \item
      Equilibrium techniques based on the Green--Kubo formula
      \[
        \rho = \int_{0}^{\infty} \expect_{\mu} \bigl[\varphi(x_t) \phi(x_0)\bigr] \, \d t.
      \]
    \item
      Transient techniques:
  \end{itemize}
\end{frame}

\section{Equilibrium and nonequilibrium dynamics}
\begin{frame}
  {Equilibrium and nonequilibrium dynamics}
  Consider a general diffusion process of the form
  \[
    \d x_t = b(x_t) \, \d t + \sigma(x_t) \, \d W_t,
  \]
  and assume that it admits an invariant distribution $\mu$.

  \vspace{.2cm}
  \begin{definition}
    [Time-reversibility]
    A stationary ($x_0 \sim \mu$) stochastic process $(x_t)$ is time-reversible if its law is invariant under time reversal:
    the law of the \emph{forward paths} $(x_s)_{0 \leq s \leq t}$
    coincides with the law of the \emph{backward paths} $(x_{t-s})_{0 \leq s \leq t}$.
  \end{definition}

  \vspace{.2cm}
  \begin{theorem}
    A stationary diffusion processes $x_t$ in $\real^d$ with generator $\mathcal L$ and invariant measure~$\mu$ is reversible if and only if $\mathcal L$ is self-adjoint in~$L^2(\mu)$.
  \end{theorem}
\end{frame}

\end{document}

% vim: ts=2 sw=2